Combining Texts

All the ideas for 'Necessary Existents', 'Frege philosophy of mathematics' and 'What Required for Foundation for Maths?'

unexpand these ideas     |    start again     |     specify just one area for these texts


59 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / D. Definition / 7. Contextual Definition
A contextual definition permits the elimination of the expression by a substitution [Dummett]
     Full Idea: The standard sense of a 'contextual definition' permits the eliminating of the defined expression, by transforming any sentence containing it into an equivalent one not containing it.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.11)
     A reaction: So the whole definition might be eliminated by a single word, which is not equivalent to the target word, which is embedded in the original expression. Clearly contextual definitions have some problems
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
In classical logic, logical truths are valid formulas; in higher-order logics they are purely logical [Dummett]
     Full Idea: For sentential or first-order logic, the logical truths are represented by valid formulas; in higher-order logics, by sentences formulated in purely logical terms.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 3)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
A prime number is one which is measured by a unit alone [Dummett]
     Full Idea: A prime number is one which is measured by a unit alone.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 11)
     A reaction: We might say that the only way of 'reaching' or 'constructing' a prime is by incrementing by one till you reach it. That seems a pretty good definition. 64, for example, can be reached by a large number of different routes.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Addition of quantities is prior to ordering, as shown in cyclic domains like angles [Dummett]
     Full Idea: It is essential to a quantitative domain of any kind that there should be an operation of adding its elements; that this is more fundamental thaat that they should be linearly ordered by magnitude is apparent from cyclic domains like that of angles.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 22 'Quantit')
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A number is a multitude composed of units [Dummett]
     Full Idea: A number is a multitude composed of units.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 2)
     A reaction: This is outdated by the assumption that 0 and 1 are also numbers, but if we say one is really just the 'unit' which is preliminary to numbers, and 0 is as bogus a number as i is, we might stick with the original Greek distinction.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
We understand 'there are as many nuts as apples' as easily by pairing them as by counting them [Dummett]
     Full Idea: A child understands 'there are just as many nuts as apples' as easily by pairing them off as by counting them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: I find it very intriguing that you could know that two sets have the same number, without knowing any numbers. Is it like knowing two foreigners spoke the same words, without understanding them? Or is 'equinumerous' conceptually prior to 'number'?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The identity of a number may be fixed by something outside structure - by counting [Dummett]
     Full Idea: The identity of a mathematical object may sometimes be fixed by its relation to what lies outside the structure to which it belongs. It is more fundamental to '3' that if certain objects are counted, there are three of them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This strikes me as Dummett being pushed (by his dislike of the purely abstract picture given by structuralism) back to a rather empiricist and physical view of numbers, though he would totally deny that.
Numbers aren't fixed by position in a structure; it won't tell you whether to start with 0 or 1 [Dummett]
     Full Idea: The number 0 is not differentiated from 1 by its position in a progression, otherwise there would be no difference between starting with 0 and starting with 1. That is enough to show that numbers are not identifiable just as positions in structures.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This sounds conclusive, but doesn't feel right. If numbers are a structure, then where you 'start' seems unimportant. Where do you 'start' in St Paul's Cathedral? Starting sounds like a constructivist concept for number theory.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Set theory isn't part of logic, and why reduce to something more complex? [Dummett]
     Full Idea: The two frequent modern objects to logicism are that set theory is not part of logic, or that it is of no interest to 'reduce' a mathematical theory to another, more complex, one.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: Dummett says these are irrelevant (see context). The first one seems a good objection. The second one less so, because whether something is 'complex' is a quite different issue from whether it is ontologically more fundamental.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The distinction of concrete/abstract, or actual/non-actual, is a scale, not a dichotomy [Dummett]
     Full Idea: The distinction between concrete and abstract objects, or Frege's corresponding distinction between actual and non-actual objects, is not a sharp dichotomy, but resembles a scale upon which objects occupy a range of positions.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: This might seem right if you live (as Dummett chooses to) in the fog of language, but it surely can't be right if you think about reality. Is the Equator supposed to be near the middle of his scale? Either there is an equator, or there isn't.
7. Existence / D. Theories of Reality / 2. Realism
Realism is just the application of two-valued semantics to sentences [Dummett]
     Full Idea: Fully fledged realism depends on - indeed, may be identified with - an undiluted application to sentences of the relevant kind of straightforwards two-valued semantics.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: This is the sort of account you get from a whole-heartedly linguistic philosopher. Personally I would say that Dummett has got it precisely the wrong way round: I adopt a two-valued semantics because my metaphysics is realist.
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Nominalism assumes unmediated mental contact with objects [Dummett]
     Full Idea: The nominalist superstition is based ultimately on the myth of the unmediated presentation of genuine concrete objects to the mind.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: Personally I am inclined to favour nominalism and a representative theory of perception, which acknowledges some 'mediation', but of a non-linguistic form. Any good theory here had better include animals, which seem to form concepts.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
The existence of abstract objects is a pseudo-problem [Dummett]
     Full Idea: The existence of abstract objects is a pseudo-problem.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: This remark follows after Idea 9884, which says the abstract/concrete distinction is a sliding scale. Personally I take the distinction to be fairly sharp, and it is therefore probably the single most important problem in the whole of human thought.
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Abstract objects nowadays are those which are objective but not actual [Dummett]
     Full Idea: Objects which are objective but not actual are precisely what are now called abstract objects.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: Why can there not be subjective abstract objects? 'My favourites are x, y and z'. 'I'll decide later what my favourites are'. 'I only buy my favourites - nothing else'.
It is absurd to deny the Equator, on the grounds that it lacks causal powers [Dummett]
     Full Idea: If someone argued that assuming the existence of the Equator explains nothing, and it has no causal powers, so everything would be the same if it didn't exist, so we needn't accept its existence, we should gape at the crudity of the misunderstanding.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: Not me. I would gape if someone argued that latitude 55° 14' (and an infinity of other lines) exists for the same reasons (whatever they may be) that the Equator exists. A mode of description can't create an object.
'We've crossed the Equator' has truth-conditions, so accept the Equator - and it's an object [Dummett]
     Full Idea: 'We've crossed the Equator' is judged true if we are nearer the other Pole, so it not for philosophers to deny that the Earth has an equator, and we see that the Equator is not a concept or relation or function, so it must be classified as an object.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: A lovely example of linguistic philosophy in action (and so much the worse for that, I would say). A useful label here, I suggest (unoriginally, I think), is that we should label such an item a 'semantic object', rather than a real object in our ontology.
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
Abstract objects need the context principle, since they can't be encountered directly [Dummett]
     Full Idea: To recognise that there is no objection in principle to abstract objects requires acknowledgement that some form of the context principle is correct, since abstract objects can neither be encountered nor presented.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.16)
     A reaction: I take this to be an immensely important idea. I consider myself to be a philosopher of thought rather than a philosopher of language (Dummett's distinction, he being one of the latter). Thought connects to the world, but does it connect to abstracta?
9. Objects / F. Identity among Objects / 2. Defining Identity
Content is replaceable if identical, so replaceability can't define identity [Dummett, by Dummett]
     Full Idea: Husserl says the only ground for assuming the replaceability of one content by another is their identity; we are therefore not entitled to define their identity as consisting in their replaceability.
     From: report of Michael Dummett (Frege philosophy of mathematics [1991]) by Michael Dummett - Frege philosophy of mathematics Ch.12
     A reaction: This is a direct challenge to Frege. Tricky to arbitrate, as it is an issue of conceptual priority. My intuition is with Husserl, but maybe the two are just benignly inerdefinable.
Frege introduced criteria for identity, but thought defining identity was circular [Dummett]
     Full Idea: In his middle period Frege rated identity indefinable, on the ground that every definition must take the form of an identity-statement. Frege introduced the notion of criterion of identity, which has been widely used by analytical philosophers.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.10)
     A reaction: The objection that attempts to define identity would be circular sounds quite plausible. It sounds right to seek a criterion for type-identity (in shared properties or predicates), but token-identity looks too fundamental to give clear criteria.
18. Thought / D. Concepts / 4. Structure of Concepts / i. Conceptual priority
Maybe a concept is 'prior' to another if it can be defined without the second concept [Dummett]
     Full Idea: One powerful argument for a thesis that one notion is conceptually prior to another is the possibility of defining the first without reference to the second.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: You'd better check whether you can't also define the second without reference to the first before you rank their priority. And maybe 'conceptual priority' is conceptually prior to 'definition' (i.e. definition needs a knowledge of priority). Help!
An argument for conceptual priority is greater simplicity in explanation [Dummett]
     Full Idea: An argument for conceptual priority is greater simplicity in explanation.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: One might still have to decide priority between two equally simple (or complex) concepts. I begin to wonder whether 'priority' has any other than an instrumental meaning (according to which direction you wish to travel - is London before Edinburgh?).
18. Thought / E. Abstraction / 1. Abstract Thought
Abstract terms are acceptable as long as we know how they function linguistically [Dummett]
     Full Idea: To recognise abstract terms as perfectly proper items of a vocabulary depends upon allowing that all that is necessary for the lawful introduction of a range of expressions into the language is a coherent account of how they are to function in sentences.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.16)
     A reaction: Why can't the 'coherent account' of the sentences include the fact that there must be something there for the terms to refer to? How else are we to eliminate nonsense words which obey good syntactical rules? Cf. Idea 9872.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
There is no reason why abstraction by equivalence classes should be called 'logical' [Dummett, by Tait]
     Full Idea: Dummett uses the term 'logical abstraction' for the construction of the abstract objects as equivalence classes, but it is not clear why we should call this construction 'logical'.
     From: report of Michael Dummett (Frege philosophy of mathematics [1991]) by William W. Tait - Frege versus Cantor and Dedekind n 14
     A reaction: This is a good objection, and Tait offers a much better notion of 'logical abstraction' (as involving preconditions for successful inference), in Idea 9981.
We arrive at the concept 'suicide' by comparing 'Cato killed Cato' with 'Brutus killed Brutus' [Dummett]
     Full Idea: We arrive at the concept of suicide by considering both occurrences in the sentence 'Cato killed Cato' of the proper name 'Cato' as simultaneously replaceable by another name, say 'Brutus', and so apprehending the pattern common to both sentences.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.14)
     A reaction: This is intended to illustrate Frege's 'logical abstraction' technique, as opposed to wicked psychological abstraction. The concept of suicide is the pattern 'x killed x'. This is a crucial example if we are to understand abstraction...
18. Thought / E. Abstraction / 8. Abstractionism Critique
To abstract from spoons (to get the same number as the forks), the spoons must be indistinguishable too [Dummett]
     Full Idea: To get units by abstraction, units arrived at by abstraction from forks must the identical to that abstracted from spoons, with no trace of individuality. But if spoons can no longer be differentiated from forks, they can't differ from one another either.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 8)
     A reaction: [compressed] Dummett makes the point better than Frege did. Can we 'think of a fork insofar as it is countable, ignoring its other features'? What are we left thinking of? Frege says it must still be the whole fork. 'Nice fork, apart from the colour'.
19. Language / C. Assigning Meanings / 5. Fregean Semantics
Fregean semantics assumes a domain articulated into individual objects [Dummett]
     Full Idea: A Fregean semantics assumes a domain already determinately articulated into individual objects.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 8)
     A reaction: A more interesting criticism than most of Dummett's other challenges to the Frege/Davidson view. I am beginning to doubt whether the semantics and the ontology can ever be divorced from the psychology, of thought, interests, focus etc.
19. Language / D. Propositions / 3. Concrete Propositions
Propositions (such as 'that dog is barking') only exist if their items exist [Williamson]
     Full Idea: A proposition about an item exists only if that item exists... how could something be the proposition that that dog is barking in circumstances in which that dog does not exist?
     From: Timothy Williamson (Necessary Existents [2002], p.240), quoted by Trenton Merricks - Propositions
     A reaction: This is a view of propositions I can't make sense of. If I'm under an illusion that there is a dog barking nearby, when there isn't one, can I not say 'that dog is barking'? If I haven't expressed a proposition, what have I done?
27. Natural Reality / C. Space / 3. Points in Space
Why should the limit of measurement be points, not intervals? [Dummett]
     Full Idea: By what right do we assume that the limit of measurement is a point, and not an interval?
     From: Michael Dummett (Frege philosophy of mathematics [1991], 22 'Quantit')