Combining Texts

All the ideas for 'Necessary Existents', 'Anti-essentialism' and 'Introduction to the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logical space is abstracted from the actual world [Stalnaker]
     Full Idea: Logical space is not given independently of the individuals that occupy it, but is abstracted from the world as we find it.
     From: Robert C. Stalnaker (Anti-essentialism [1979], p.85)
     A reaction: I very much like the second half of this idea, and am delighted to find Stalnaker endorsing it. I take the logical connectives to be descriptions of how things behave, at a high level of generality.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
9. Objects / C. Structure of Objects / 7. Substratum
For the bare particular view, properties must be features, not just groups of objects [Stalnaker]
     Full Idea: If we are to make sense of the bare particular theory, a property must be not just a rule for grouping individuals, but a feature of individuals in virtue of which they may be grouped.
     From: Robert C. Stalnaker (Anti-essentialism [1979], p.76)
     A reaction: He is offering an objection to the thoroughly extensional account of properties that is found in standard possible worlds semantics. Quite right too. We can't give up on the common sense notion of a property.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
An essential property is one had in all the possible worlds where a thing exists [Stalnaker]
     Full Idea: If necessity is explained in terms of possible worlds, ...then an essential property is a property that a thing has in all possible worlds in which it exists.
     From: Robert C. Stalnaker (Anti-essentialism [1979], p.71)
     A reaction: This seems to me to be a quite shocking confusion of necessary properties with essential properties. The point is that utterly trivial properties can be necessary, but in no way part of the real essence of something.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
Necessarily self-identical, or being what it is, or its world-indexed properties, aren't essential [Stalnaker]
     Full Idea: We can remain anti-essentialist while allowing some necessary properties: those essential to everything (self-identity), relational properties (being what it is), and world-indexed properties (being snub-nosed-only-in-Kronos).
     From: Robert C. Stalnaker (Anti-essentialism [1979], p.73)
     A reaction: [a summary] He defined essential properties as necessary properties (Idea 12761), and now backpeddles. World-indexed properties are an invention of Plantinga, as essential properties to don't limit individuals. But they are necessary, not essential!
9. Objects / D. Essence of Objects / 15. Against Essentialism
Bare particular anti-essentialism makes no sense within modal logic semantics [Stalnaker]
     Full Idea: I argue that one cannot make semantical sense out of bare particular anti-essentialism within the framework of standard semantics for modal logic.
     From: Robert C. Stalnaker (Anti-essentialism [1979], p.71)
     A reaction: Stalnaker characterises the bare particular view as ANTI-essentialist, because he has defined essence in terms of necessary properties. The bare particular seems to allow the possibility of Aristotle being a poached egg.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Why imagine that Babe Ruth might be a billiard ball; nothing useful could be said about the ball [Stalnaker]
     Full Idea: I cannot think of any point in making the counterfactual supposition that Babe Ruth is a billiard ball; there is nothing I can say about him in that imagined state that I could not just as well say about billiard balls that are not him.
     From: Robert C. Stalnaker (Anti-essentialism [1979], p.79)
     A reaction: A bizarrely circumspect semanticists way of saying that Ruth couldn't possibly be a billiard ball! Would he say the same about a group of old men in wheelchairs, one of whom IS Babe Ruth?
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
19. Language / D. Propositions / 3. Concrete Propositions
Propositions (such as 'that dog is barking') only exist if their items exist [Williamson]
     Full Idea: A proposition about an item exists only if that item exists... how could something be the proposition that that dog is barking in circumstances in which that dog does not exist?
     From: Timothy Williamson (Necessary Existents [2002], p.240), quoted by Trenton Merricks - Propositions
     A reaction: This is a view of propositions I can't make sense of. If I'm under an illusion that there is a dog barking nearby, when there isn't one, can I not say 'that dog is barking'? If I haven't expressed a proposition, what have I done?