Combining Texts

All the ideas for 'Axiomatic Theories of Truth (2005 ver)', 'Knowledge' and 'Grundgesetze der Arithmetik 1 (Basic Laws)'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

3. Truth / A. Truth Problems / 2. Defining Truth
Truth definitions don't produce a good theory, because they go beyond your current language [Halbach]
     Full Idea: It is far from clear that a definition of truth can lead to a philosophically satisfactory theory of truth. Tarski's theorem on the undefinability of the truth predicate needs resources beyond those of the language for which it is being defined.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: The idea is that you need a 'metalanguage' for the definition. If I say 'p' is a true sentence in language 'L', I am not making that observation from within language L. The dream is a theory confined to the object language.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
In semantic theories of truth, the predicate is in an object-language, and the definition in a metalanguage [Halbach]
     Full Idea: In semantic theories of truth (Tarski or Kripke), a truth predicate is defined for an object-language. This definition is carried out in a metalanguage, which is typically taken to include set theory or another strong theory or expressive language.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: Presumably the metalanguage includes set theory because that connects it with mathematics, and enables it to be formally rigorous. Tarski showed, in his undefinability theorem, that the meta-language must have increased resources.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Should axiomatic truth be 'conservative' - not proving anything apart from implications of the axioms? [Halbach]
     Full Idea: If truth is not explanatory, truth axioms should not allow proof of new theorems not involving the truth predicate. It is hence said that axiomatic truth should be 'conservative' - not implying further sentences beyond what the axioms can prove.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: [compressed]
If truth is defined it can be eliminated, whereas axiomatic truth has various commitments [Halbach]
     Full Idea: If truth can be explicitly defined, it can be eliminated, whereas an axiomatized notion of truth may bring all kinds of commitments.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: The general principle that anything which can be defined can be eliminated (in an abstract theory, presumably, not in nature!) raises interesting questions about how many true theories there are which are all equivalent to one another.
Axiomatic theories of truth need a weak logical framework, and not a strong metatheory [Halbach]
     Full Idea: Axiomatic theories of truth can be presented within very weak logical frameworks which require very few resources, and avoid the need for a strong metalanguage and metatheory.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
Instead of a truth definition, add a primitive truth predicate, and axioms for how it works [Halbach]
     Full Idea: The axiomatic approach does not presuppose that truth can be defined. Instead, a formal language is expanded by a new primitive predicate of truth, and axioms for that predicate are then laid down.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: Idea 15647 explains why Halbach thinks the definition route is no good.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationists say truth merely serves to express infinite conjunctions [Halbach]
     Full Idea: According to many deflationists, truth serves merely the purpose of expressing infinite conjunctions.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: That is, it asserts sentences that are too numerous to express individually. It also seems, on a deflationist view, to serve for anaphoric reference to sentences, such as 'what she just said is true'.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
To prove the consistency of set theory, we must go beyond set theory [Halbach]
     Full Idea: The consistency of set theory cannot be established without assumptions transcending set theory.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 2.1)
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
We can use truth instead of ontologically loaded second-order comprehension assumptions about properties [Halbach]
     Full Idea: The reduction of 2nd-order theories (of properties or sets) to axiomatic theories of truth may be conceived as a form of reductive nominalism, replacing existence assumptions (for comprehension axioms) by ontologically innocent truth assumptions.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.1)
     A reaction: I like this very much, as weeding properties out of logic (without weeding them out of the world). So-called properties in logic are too abundant, so there is a misfit with their role in science.
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Instead of saying x has a property, we can say a formula is true of x - as long as we have 'true' [Halbach]
     Full Idea: Quantification over (certain) properties can be mimicked in a language with a truth predicate by quantifying over formulas. Instead of saying that Tom has the property of being a poor philosopher, we can say 'x is a poor philosopher' is true of Tom.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.1)
     A reaction: I love this, and think it is very important. He talks of 'mimicking' properties, but I see it as philosophers mistakenly attributing properties, when actually what they were doing is asserting truths involving certain predicates.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Frege considered definite descriptions to be genuine singular terms [Frege, by Fitting/Mendelsohn]
     Full Idea: Frege (1893) considered a definite description to be a genuine singular term (as we do), so that a sentence like 'The present King of France is bald' would have the same logical form as 'Harry Truman is bald'.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by M Fitting/R Mendelsohn - First-Order Modal Logic
     A reaction: The difficulty is what the term refers to, and they embrace a degree of Meinongianism - that is that non-existent objects can still have properties attributed to them, and so can be allowed some sort of 'existence'.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Contradiction arises from Frege's substitutional account of second-order quantification [Dummett on Frege]
     Full Idea: The contradiction in Frege's system is due to the presence of second-order quantification, ..and Frege's explanation of the second-order quantifier, unlike that which he provides for the first-order one, appears to be substitutional rather than objectual.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], §25) by Michael Dummett - Frege philosophy of mathematics Ch.17
     A reaction: In Idea 9871 Dummett adds the further point that Frege lacks a clear notion of the domain of quantification. At this stage I don't fully understand this idea, but it is clearly of significance, so I will return to it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are ratios of quantities, such as lengths or masses [Frege]
     Full Idea: If 'number' is the referent of a numerical symbol, a real number is the same as a ratio of quantities. ...A length can have to another length the same ratio as a mass to another mass.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], III.1.73), quoted by Michael Dummett - Frege philosophy of mathematics 21 'Frege's'
     A reaction: This is part of a critique of Cantor and the Cauchy series approach. Interesting that Frege, who is in the platonist camp, is keen to connect the real numbers with natural phenomena. He is always keen to keep touch with the application of mathematics.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
We can't prove everything, but we can spell out the unproved, so that foundations are clear [Frege]
     Full Idea: It cannot be demanded that everything be proved, because that is impossible; but we can require that all propositions used without proof be expressly declared as such, so that we can see distinctly what the whole structure rests upon.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.2), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 7 'What'
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Frege defined number in terms of extensions of concepts, but needed Basic Law V to explain extensions [Frege, by Hale/Wright]
     Full Idea: Frege opts for his famous definition of numbers in terms of extensions of the concept 'equal to the concept F', but he then (in 'Grundgesetze') needs a theory of extensions or classes, which he provided by means of Basic Law V.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by B Hale / C Wright - Intro to 'The Reason's Proper Study' §1
Frege ignored Cantor's warning that a cardinal set is not just a concept-extension [Tait on Frege]
     Full Idea: Cantor pointed out explicitly to Frege that it is a mistake to take the notion of a set (i.e. of that which has a cardinal number) to simply mean the extension of a concept. ...Frege's later assumption of this was an act of recklessness.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by William W. Tait - Frege versus Cantor and Dedekind III
     A reaction: ['recklessness' is on p.61] Tait has no sympathy with the image of Frege as an intellectual martyr. Frege had insufficient respect for a great genius. Cantor, crucially, understood infinity much better than Frege.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
My Basic Law V is a law of pure logic [Frege]
     Full Idea: I hold that my Basic Law V is a law of pure logic.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.4), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: This is, of course, the notorious law which fell foul of Russell's Paradox. It is said to be pure logic, even though it refers to things that are F and things that are G.
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / a. Reliable knowledge
Belief is knowledge if it is true, certain, and obtained by a reliable process [Ramsey]
     Full Idea: I have always said that a belief was knowledge if it was (i) true, (ii) certain, (iii) obtained by a reliable process.
     From: Frank P. Ramsey (Knowledge [1929]), quoted by Juan Comesaņa - Reliabilism 2
     A reaction: Remarkable to be addressing the Gettier problem at that date, but Russell had flirted with the problem. Ramsey says the production of the belief must be reliable, rather than the justification for the belief. Note that he wants certainty.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
A concept is a function mapping objects onto truth-values, if they fall under the concept [Frege, by Dummett]
     Full Idea: In later Frege, a concept could be taken as a particular case of a function, mapping every object on to one of the truth-values (T or F), according as to whether, as we should ordinarily say, that object fell under the concept or not.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Michael Dummett - The Philosophy of Mathematics 3.5
     A reaction: As so often in these attempts at explanation, this sounds circular. You can't decide whether an object truly falls under a concept, if you haven't already got the concept. His troubles all arise (I say) because he scorns abstractionist accounts.
Frege took the study of concepts to be part of logic [Frege, by Shapiro]
     Full Idea: Frege took the study of concepts and their extensions to be within logic.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Stewart Shapiro - Foundations without Foundationalism 7.1
     A reaction: This is part of the plan to make logic a universal language (see Idea 13664). I disagree with this, and with the general logicist view of the position of logic. The logical approach thins concepts out. See Deleuze/Guattari's horror at this.