Combining Texts

All the ideas for 'Axiomatic Theories of Truth (2005 ver)', 'Grundgesetze der Arithmetik 2 (Basic Laws)' and 'Ontology and Mathematical Truth'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

2. Reason / D. Definition / 2. Aims of Definition
Later Frege held that definitions must fix a function's value for every possible argument [Frege, by Wright,C]
     Full Idea: Frege later became fastidious about definitions, and demanded that they must provide for every possible case, and that no function is properly determined unless its value is fixed for every conceivable object as argument.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Crispin Wright - Frege's Concept of Numbers as Objects 3.xiv
     A reaction: Presumably definitions come in degrees of completeness, but it seems harsh to describe a desire for the perfect definition as 'fastidious', especially if we are talking about mathematics, rather than defining 'happiness'.
2. Reason / D. Definition / 7. Contextual Definition
We can't define a word by defining an expression containing it, as the remaining parts are a problem [Frege]
     Full Idea: Given the reference (bedeutung) of an expression and a part of it, obviously the reference of the remaining part is not always determined. So we may not define a symbol or word by defining an expression in which it occurs, whose remaining parts are known
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §66)
     A reaction: Dummett cites this as Frege's rejection of contextual definitions, which he had employed in the Grundlagen. I take it not so much that they are wrong, as that Frege decided to set the bar a bit higher.
2. Reason / D. Definition / 11. Ostensive Definition
Only what is logically complex can be defined; what is simple must be pointed to [Frege]
     Full Idea: Only what is logically complex can be defined; what is simple can only be pointed to.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §180), quoted by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.137
     A reaction: Frege presumably has in mind his treasured abstract objects, such as cardinal numbers. It is hard to see how you could 'point to' anything in the phenomenal world that had atomic simplicity. Hodes calls this a 'desperate Kantian move'.
3. Truth / A. Truth Problems / 2. Defining Truth
Truth definitions don't produce a good theory, because they go beyond your current language [Halbach]
     Full Idea: It is far from clear that a definition of truth can lead to a philosophically satisfactory theory of truth. Tarski's theorem on the undefinability of the truth predicate needs resources beyond those of the language for which it is being defined.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: The idea is that you need a 'metalanguage' for the definition. If I say 'p' is a true sentence in language 'L', I am not making that observation from within language L. The dream is a theory confined to the object language.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
In semantic theories of truth, the predicate is in an object-language, and the definition in a metalanguage [Halbach]
     Full Idea: In semantic theories of truth (Tarski or Kripke), a truth predicate is defined for an object-language. This definition is carried out in a metalanguage, which is typically taken to include set theory or another strong theory or expressive language.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: Presumably the metalanguage includes set theory because that connects it with mathematics, and enables it to be formally rigorous. Tarski showed, in his undefinability theorem, that the meta-language must have increased resources.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Should axiomatic truth be 'conservative' - not proving anything apart from implications of the axioms? [Halbach]
     Full Idea: If truth is not explanatory, truth axioms should not allow proof of new theorems not involving the truth predicate. It is hence said that axiomatic truth should be 'conservative' - not implying further sentences beyond what the axioms can prove.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: [compressed]
If truth is defined it can be eliminated, whereas axiomatic truth has various commitments [Halbach]
     Full Idea: If truth can be explicitly defined, it can be eliminated, whereas an axiomatized notion of truth may bring all kinds of commitments.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: The general principle that anything which can be defined can be eliminated (in an abstract theory, presumably, not in nature!) raises interesting questions about how many true theories there are which are all equivalent to one another.
Axiomatic theories of truth need a weak logical framework, and not a strong metatheory [Halbach]
     Full Idea: Axiomatic theories of truth can be presented within very weak logical frameworks which require very few resources, and avoid the need for a strong metalanguage and metatheory.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
Instead of a truth definition, add a primitive truth predicate, and axioms for how it works [Halbach]
     Full Idea: The axiomatic approach does not presuppose that truth can be defined. Instead, a formal language is expanded by a new primitive predicate of truth, and axioms for that predicate are then laid down.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: Idea 15647 explains why Halbach thinks the definition route is no good.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationists say truth merely serves to express infinite conjunctions [Halbach]
     Full Idea: According to many deflationists, truth serves merely the purpose of expressing infinite conjunctions.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: That is, it asserts sentences that are too numerous to express individually. It also seems, on a deflationist view, to serve for anaphoric reference to sentences, such as 'what she just said is true'.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
'Impure' sets have a concrete member, while 'pure' (abstract) sets do not [Jubien]
     Full Idea: Any set with a concrete member is 'impure'. 'Pure' sets are those that are not impure, and are paradigm cases of abstract entities, such as the sort of sets apparently dealt with in Zermelo-Fraenkel (ZF) set theory.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.116)
     A reaction: [I am unclear whether Jubien is introducing this distinction] This seems crucial in accounts of mathematics. On the one had arithmetic can be built from Millian pebbles, giving impure sets, while logicists build it from pure sets.
To prove the consistency of set theory, we must go beyond set theory [Halbach]
     Full Idea: The consistency of set theory cannot be established without assumptions transcending set theory.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 2.1)
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
We can use truth instead of ontologically loaded second-order comprehension assumptions about properties [Halbach]
     Full Idea: The reduction of 2nd-order theories (of properties or sets) to axiomatic theories of truth may be conceived as a form of reductive nominalism, replacing existence assumptions (for comprehension axioms) by ontologically innocent truth assumptions.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.1)
     A reaction: I like this very much, as weeding properties out of logic (without weeding them out of the world). So-called properties in logic are too abundant, so there is a misfit with their role in science.
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Instead of saying x has a property, we can say a formula is true of x - as long as we have 'true' [Halbach]
     Full Idea: Quantification over (certain) properties can be mimicked in a language with a truth predicate by quantifying over formulas. Instead of saying that Tom has the property of being a poor philosopher, we can say 'x is a poor philosopher' is true of Tom.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.1)
     A reaction: I love this, and think it is very important. He talks of 'mimicking' properties, but I see it as philosophers mistakenly attributing properties, when actually what they were doing is asserting truths involving certain predicates.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is 'fundamental' if it contains only concrete entities [Jubien]
     Full Idea: A first-order model can be viewed as a kind of ordered set, and if the domain of the model contains only concrete entities then it is a 'fundamental' model.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.117)
     A reaction: An important idea. Fundamental models are where the world of logic connects with the physical world. Any account of relationship between fundamental models and more abstract ones tells us how thought links to world.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cardinals say how many, and reals give measurements compared to a unit quantity [Frege]
     Full Idea: The cardinals and the reals are completely disjoint domains. The cardinal numbers answer the question 'How many objects of a given kind are there?', but the real numbers are for measurement, saying how large a quantity is compared to a unit quantity.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §157), quoted by Michael Dummett - Frege philosophy of mathematics Ch.19
     A reaction: We might say that cardinals are digital and reals are analogue. Frege is unusual in totally separating them. They map onto one another, after all. Cardinals look like special cases of reals. Reals are dreams about the gaps between cardinals.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
There couldn't just be one number, such as 17 [Jubien]
     Full Idea: It makes no sense to suppose there might be just one natural number, say seventeen.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.113)
     A reaction: Hm. Not convinced. If numbers are essentially patterns, we might only have the number 'twelve', because we had built our religion around anything which exhibited that form (in any of its various arrangements). Nice point, though.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are ratios of quantities [Frege, by Dummett]
     Full Idea: Frege fixed on construing real numbers as ratios of quantities (in agreement with Newton).
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Michael Dummett - Frege philosophy of mathematics Ch.20
     A reaction: If 3/4 is the same real number as 6/8, which is the correct ratio? Why doesn't the square root of 9/16 also express it? Why should irrationals be so utterly different from rationals? In what sense are they both 'numbers'?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A number is a class of classes of the same cardinality [Frege, by Dummett]
     Full Idea: For Frege, in 'Grundgesetze', a number is a class of classes of the same cardinality.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Michael Dummett - Frege Philosophy of Language (2nd ed) Ch.14
Frege's biggest error is in not accounting for the senses of number terms [Hodes on Frege]
     Full Idea: The inconsistency of Grundgesetze was only a minor flaw. Its fundamental flaw was its inability to account for the way in which the senses of number terms are determined. It leaves the reference-magnetic nature of the standard numberer a mystery.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.139
     A reaction: A point also made by Hofweber. As a logician, Frege was only concerned with the inferential role of number terms, and he felt he had captured their logical form, but it is when you come to look at numbers in natural language that he seem in trouble.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The subject-matter of (pure) mathematics is abstract structure [Jubien]
     Full Idea: The subject-matter of (pure) mathematics is abstract structure per se.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.115)
     A reaction: This is the Structuralist idea beginning to take shape after Benacerraf's launching of it. Note that Jubien gets there by his rejection of platonism, whereas some structuralist have given a platonist interpretation of structure.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If we all intuited mathematical objects, platonism would be agreed [Jubien]
     Full Idea: If the intuition of mathematical objects were general, there would be no real debate over platonism.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: It is particularly perplexing when Gödel says that his perception of them is just like sight or smell, since I have no such perception. How do you individuate very large numbers, or irrational numbers, apart from writing down numerals?
How can pure abstract entities give models to serve as interpretations? [Jubien]
     Full Idea: I am unable to see how the mere existence of pure abstract entities enables us to concoct appropriate models to serve as interpretations.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: Nice question. It is always assumed that once we have platonic realm, that everything else follows. Even if we are able to grasp the objects, despite their causal inertness, we still have to discern innumerable relations between them.
Since mathematical objects are essentially relational, they can't be picked out on their own [Jubien]
     Full Idea: The essential properties of mathematical entities seem to be relational, ...so we make no progress unless we can pick out some mathematical entities wihout presupposing other entities already picked out.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.112)
     A reaction: [compressed] Jubien is a good critic of platonism. He has identified the problem with Frege's metaphor of a 'borehole', where we discover delightful new properties of numbers simply by reaching them.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism misunderstands applications, metatheory, and infinity [Frege, by Dummett]
     Full Idea: Frege's three main objections to radical formalism are that it cannot account for the application of mathematics, that it confuses a formal theory with its metatheory, and it cannot explain an infinite sequence.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §86-137) by Michael Dummett - Frege philosophy of mathematics
     A reaction: The application is because we don't design maths randomly, but to be useful. The third objection might be dealt with by potential infinities (from formal rules). The second objection sounds promising.
Only applicability raises arithmetic from a game to a science [Frege]
     Full Idea: It is applicability alone which elevates arithmetic from a game to the rank of a science.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §91), quoted by Stewart Shapiro - Thinking About Mathematics 6.1.2
     A reaction: This is the basic objection to Formalism. It invites the question of why it is applicable, which platonists like Frege don't seem to answer (though Plato himself has reality modelled on the Forms). This is why I like structuralism.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
The empty set is the purest abstract object [Jubien]
     Full Idea: The empty set is the pure abstract object par excellence.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.118 n8)
     A reaction: So a really good PhD on the empty set could crack the whole nature of reality. Get to work, whoever you are!
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
The first demand of logic is of a sharp boundary [Frege]
     Full Idea: The first demand of logic is of a sharp boundary.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §160), quoted by Michael Dummett - Frege philosophy of mathematics Ch.22
     A reaction: Nothing I have read about vagueness has made me doubt Frege's view of this, although precisification might allow you to do logic with vague concepts without having to finally settle where the actual boundaries are.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
The modern account of real numbers detaches a ratio from its geometrical origins [Frege]
     Full Idea: From geometry we retain the interpretation of a real number as a ratio of quantities or measurement-number; but in more recent times we detach it from geometrical quantities, and from all particular types of quantity.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §159), quoted by Michael Dummett - Frege philosophy of mathematics
     A reaction: Dummett glosses the 'recent' version as by Cantor and Dedekind in 1872. This use of 'detach' seems to me startlingly like the sort of psychological abstractionism which Frege was so desperate to avoid.
18. Thought / E. Abstraction / 8. Abstractionism Critique
If we abstract the difference between two houses, they don't become the same house [Frege]
     Full Idea: If abstracting from the difference between my house and my neighbour's, I were to regard both houses as mine, the defect of the abstraction would soon be made clear. It may, though, be possible to obtain a concept by means of abstraction...
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §99)
     A reaction: Note the important concession at the end, which shows Frege could never deny the abstraction process, despite all the modern protests by Geach and Dummett that he totally rejected it.