Combining Texts

All the ideas for 'The Rationality of Science', 'Being You' and 'Understanding the Infinite'

unexpand these ideas     |    start again     |     specify just one area for these texts


57 ideas

1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
For science to be rational, we must explain scientific change rationally [Newton-Smith]
     Full Idea: We are only justified in regarding scientific practice as the very paradigm of rationality if we can justify the claim that scientific change is rationally explicable.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.2)
We do not wish merely to predict, we also want to explain [Newton-Smith]
     Full Idea: We do not wish merely to predict, we also want to explain.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.3)
The real problem of science is how to choose between possible explanations [Newton-Smith]
     Full Idea: Once we move beyond investigating correlations between observables the question of what does or should guide our choice between alternative explanatory accounts becomes problematic.
     From: W.H. Newton-Smith (The Rationality of Science [1981], IX.2)
1. Philosophy / G. Scientific Philosophy / 2. Positivism
Critics attack positivist division between theory and observation [Newton-Smith]
     Full Idea: The critics of positivism attacked the conception of a dichotomy between theory and observation.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
Positivists hold that theoretical terms change, but observation terms don't [Newton-Smith]
     Full Idea: For positivists it was taken that while theory change meant change in the meaning of theoretical terms, the meaning of observational terms was invariant under theory change.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
3. Truth / A. Truth Problems / 6. Verisimilitude
More truthful theories have greater predictive power [Newton-Smith]
     Full Idea: If a theory is a better approximation to the truth, then it is likely that it will have greater predictive power.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VIII.8)
Theories generate infinite truths and falsehoods, so they cannot be used to assess probability [Newton-Smith]
     Full Idea: We cannot explicate a useful notion of verisimilitude in terms of the number of truths and the number of falsehoods generated by a theory, because they are infinite.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.4)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
     Full Idea: Second-order set theory is just like first-order set-theory, except that we use the version of Replacement with a universal second-order quantifier over functions from set to sets.
     From: Shaughan Lavine (Understanding the Infinite [1994], VII.4)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
     Full Idea: A member m of M is an 'upper bound' of a subset N of M if m is not less than any member of N. A member m of M is a 'least upper bound' of N if m is an upper bound of N such that if l is any other upper bound of N, then m is less than l.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: [if you don't follow that, you'll have to keep rereading it till you do]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
     Full Idea: Since combinatorial collections are enumerated, some multiplicities may be too large to be gathered into combinatorial collections. But the size of a multiplicity seems quite irrelevant to whether it forms a logical connection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
     Full Idea: Many of those who are skeptical about the existence of infinite combinatorial collections would want to doubt or deny the Axiom of Choice.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
     Full Idea: The Power Set is just he codification of the fact that the collection of functions from a mathematical collection to a mathematical collection is itself a mathematical collection that can serve as a domain of mathematical study.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
     Full Idea: The Axiom of Replacement (of Skolem and Fraenkel) was remarkable for its universal acceptance, though it seemed to have no consequences except for the properties of the higher reaches of the Cantorian infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
     Full Idea: The Axiom of Foundation (Zermelo 1930) says 'Every (descending) chain in which each element is a member of the previous one is of finite length'. ..This forbids circles of membership, or ungrounded sets. ..The iterative conception gives this centre stage.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
     Full Idea: Combinatorial collections (defined just by the members) obviously obey the Axiom of Choice, while it is at best dubious whether logical connections (defined by a rule) do.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
     Full Idea: The controversy was not about Choice per se, but about the correct notion of function - between advocates of taking mathematics to be about arbitrary functions and advocates of taking it to be about functions given by rules.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
     Full Idea: The Peano-Russell notion of class is the 'logical' notion, where each collection is associated with some kind of definition or rule that characterises the members of the collection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
     Full Idea: The iterative conception of set was not so much as suggested, let alone advocated by anyone, until 1947.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
     Full Idea: The iterative conception of sets does not tell us how far to iterate, and so we must start with an Axiom of Infinity. It also presupposes the notion of 'transfinite iteration'.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
     Full Idea: The iterative conception does not provide a conception that unifies the axioms of set theory, ...and it has had very little impact on what theorems can be proved.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
     A reaction: He says he would like to reject the iterative conception, but it may turn out that Foundation enables new proofs in mathematics (though it hasn't so far).
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
     Full Idea: Limitation of Size has it that if a collection is the same size as a set, then it is a set. The Axiom of Replacement is characteristic of limitation of size.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
     Full Idea: A collection M is 'well-ordered' by a relation < if < linearly orders M with a least element, and every subset of M that has an upper bound not in it has an immediate successor.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
     Full Idea: The distinctive feature of second-order logic is that it presupposes that, given a domain, there is a fact of the matter about what the relations on it are, so that the range of the second-order quantifiers is fixed as soon as the domain is fixed.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
     A reaction: This sounds like a rather large assumption, which is open to challenge. I am not sure whether it was the basis of Quine's challenge to second-order logic. He seems to have disliked its vagueness, because it didn't stick with 'objects'.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
     Full Idea: The Law of Excluded Middle is (part of) the foundation of the mathematical practice of employing proofs by contradiction.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: This applies in a lot of logic, as well as in mathematics. Come to think of it, it applies in Sudoku.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
     Full Idea: Mathematics is today thought of as the study of abstract structure, not the study of quantity. That point of view arose directly out of the development of the set-theoretic notion of abstract structure.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.2)
     A reaction: It sounds as if Structuralism, which is a controversial view in philosophy, is a fait accompli among mathematicians.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
     Full Idea: One reason to introduce the rational numbers is that it simplifes the theory of division, since every rational number is divisible by every nonzero rational number, while the analogous statement is false for the natural numbers.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.3)
     A reaction: That is, with rations every division operation has an answer.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
     Full Idea: The chief importance of the Continuum Hypothesis for Cantor (I believe) was that it would show that the real numbers form a set, and hence that they were encompassed by his theory.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
     Full Idea: The Cauchy convergence criterion for a sequence: the sequence S0,S1,... has a limit if |S(n+r) - S(n)| is less than any given quantity for every value of r and sufficiently large values of n. He proved this necessary, but not sufficient.
     From: Shaughan Lavine (Understanding the Infinite [1994], 2.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
     Full Idea: Roughly speaking, the upper and lower parts of the Dedekind cut correspond to the commensurable ratios greater than and less than a given incommensurable ratio.
     From: Shaughan Lavine (Understanding the Infinite [1994], II.6)
     A reaction: Thus there is the problem of whether the contents of the gap are one unique thing, or many.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
     Full Idea: Counting a set produces a well-ordering of it. Conversely, if one has a well-ordering of a set, one can count it by following the well-ordering.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Cantor didn't mean that you could literally count the set, only in principle.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
     Full Idea: The indiscernibility of indefinitely large sizes will be a critical part of the theory of indefinitely large sizes.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
     Full Idea: My proposal is that the concept of the infinite began with an extrapolation from the experience of indefinitely large size.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
     A reaction: I think it might be better to talk of an 'abstraction' than an 'extrapolition', since the latter is just more of the same, which doesn't get you to concept. Lavine spends 100 pages working out his proposal.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
     Full Idea: The intuitionist endorse the actual finite, but only the potential infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
     Full Idea: The symbol 'aleph-nought' denotes the cardinal number of the set of natural numbers. The symbol 'aleph-one' denotes the next larger cardinal number. 'Aleph-omega' denotes the omega-th cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
     Full Idea: The ordinals are basic because the transfinite sets are those that can be counted, or (equivalently for Cantor), those that can be numbered by an ordinal or are well-ordered.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Lavine observes (p.55) that for Cantor 'countable' meant 'countable by God'!
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
     Full Idea: The paradox of the largest ordinal (the 'Burali-Forti') is that the class of all ordinal numbers is apparently well-ordered, and so it has an ordinal number as order type, which must be the largest ordinal - but all ordinals can be increased by one.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
     Full Idea: The paradox of the largest cardinal ('Cantor's Paradox') says the diagonal argument shows there is no largest cardinal, but the class of all individuals (including the classes) must be the largest cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
     Full Idea: Every theorem of mathematics has a counterpart with set theory - ...but that theory cannot serve as a basis for the notion of proof.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
     Full Idea: In modern mathematics virtually all work is only up to isomorphism and no one cares what the numbers or points and lines 'really are'.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: At least that leaves the field open for philosophers, because we do care what things really are. So should everybody else, but there is no persuading some people.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
     Full Idea: Intuitionism in philosophy of mathematics rejects set-theoretic foundations.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3 n33)
10. Modality / C. Sources of Modality / 1. Sources of Necessity
De re necessity arises from the way the world is [Newton-Smith]
     Full Idea: A necessary truth is 'de re' if its necessity arises from the way the world is.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.6)
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
We must assess the truth of beliefs in identifying them [Newton-Smith]
     Full Idea: We cannot determine what someone's beliefs are independently of assessing to some extent the truth or falsity of the beliefs.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.4)
13. Knowledge Criteria / E. Relativism / 6. Relativism Critique
Defeat relativism by emphasising truth and reference, not meaning [Newton-Smith]
     Full Idea: The challenge of incommensurability can be met once it is realised that in comparing theories the notions of truth and reference are more important than that of meaning.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.6)
14. Science / A. Basis of Science / 1. Observation
A full understanding of 'yellow' involves some theory [Newton-Smith]
     Full Idea: A full grasp of the concept '…is yellow' involves coming to accept as true bits of theory; that is, generalisations involving the term 'yellow'.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.2)
14. Science / A. Basis of Science / 5. Anomalies
All theories contain anomalies, and so are falsified! [Newton-Smith]
     Full Idea: According to Feyerabend all theories are born falsified, because no theory has ever been totally free of anomalies.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
The anomaly of Uranus didn't destroy Newton's mechanics - it led to Neptune's discovery [Newton-Smith]
     Full Idea: When scientists observed the motion of Uranus, they did not give up on Newtonian mechanics. Instead they posited the existence of Neptune.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
Anomalies are judged against rival theories, and support for the current theory [Newton-Smith]
     Full Idea: Whether to reject an anomaly has to be decided on the basis of the availability of a rival theory, and on the basis of the positive evidence for the theory in question.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
14. Science / B. Scientific Theories / 1. Scientific Theory
Why should it matter whether or not a theory is scientific? [Newton-Smith]
     Full Idea: Why should it be so important to distinguish between theories that are scientific and those that are not?
     From: W.H. Newton-Smith (The Rationality of Science [1981], IV.3)
14. Science / B. Scientific Theories / 5. Commensurability
If theories are really incommensurable, we could believe them all [Newton-Smith]
     Full Idea: If theories are genuinely incommensurable why should I be faced with the problem of choosing between them? Why not believe them all?
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.1)
15. Nature of Minds / A. Nature of Mind / 8. Brain
The cerbellum has a huge number of neurons, but little involvement in consciousness [Seth]
     Full Idea: The cerebellum [at the back] has about four times as many neurons as the rest of the brain put together, but seems barely involved in consciousness.
     From: Anil Seth (Being You [2021], I.2)
     A reaction: I wonder if it also has four times as many connections?
Single neurons can carry out complex functions [Seth]
     Full Idea: It is increasingly apparent that even single neurons are capable of carrying out highly complex functions all by themselves.
     From: Anil Seth (Being You [2021], I.1 n)
     A reaction: Bang goes the simple connectionist account of consciousness.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / e. Cause of consciousness
Maybe a system is conscious if the whole generates more information than its parts [Seth]
     Full Idea: The main claim of Tononi's 'integrated information theory' is that a system is conscious to the extent that its whole generates more information than its parts.
     From: Anil Seth (Being You [2021], I.3)
     A reaction: Seth seems to present this as an 'interesting' proposal. I find it unlikely that consciousness could be explain in terms of information, or that a machine constructed on this principle would thus become conscious. (Databases pass this test).
16. Persons / C. Self-Awareness / 2. Knowing the Self
The self is embodied, perspectival, volitional, narrative and social [Seth, by PG]
     Full Idea: The elements of a self are 1) embodied - related directly to the body, 2) perspectival - having a viewpoint, 3) volitional - being an agent, 4) narrative - aware of past and future, and 5) social - as others perceive me.
     From: report of Anil Seth (Being You [2021], III.8) by PG - Db (ideas)
     A reaction: [summarised] Seth says there are distinctive emotions associated with each of these aspects of the self. This list is very helpful, as a discouragement for anyone who wants to pick one of these as the sole true nature of the self.
18. Thought / B. Mechanics of Thought / 6. Artificial Thought / a. Artificial Intelligence
Modern AI is mostly machine-based pattern recognition [Seth]
     Full Idea: Much of today's AI is best described as sophisticated machine-based pattern recognition.
     From: Anil Seth (Being You [2021], IV.13)
     A reaction: Personally I wouldn't want to underestimate the extent to which human intelligence is also pattern recognition (across time as well as in space).
20. Action / B. Preliminaries of Action / 2. Willed Action / a. Will to Act
Volition is felt as doing what you want, with possible alternatives, and a source from within [Seth]
     Full Idea: The experience of volition is defined by 1) the feeling that I am doing what I want to do, 2) that I could have done otherwise, and 3) that voluntary actions seem to come from within.
     From: Anil Seth (Being You [2021], III.11)
     A reaction: Note that these can all be cited without reference to their feeling 'free'.
20. Action / C. Motives for Action / 3. Acting on Reason / c. Reasons as causes
Explaining an action is showing that it is rational [Newton-Smith]
     Full Idea: To explain an action as an action is to show that it is rational.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.2)
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / d. Biological ethics
Human exceptionalism plagues biology, and most other human thinking [Seth]
     Full Idea: Human exceptionalism has repeatedly plagued biology, and has darkened the history of human thought everywhere.
     From: Anil Seth (Being You [2021], I.2)
     A reaction: I increasingly agree with this, as much in philosophy as in biology. We really need to get used to our place in evolution.