Combining Texts

All the ideas for 'The Rationality of Science', 'Commentary on 'De Anima'' and 'Introduction to 'Causation''

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
For science to be rational, we must explain scientific change rationally [Newton-Smith]
     Full Idea: We are only justified in regarding scientific practice as the very paradigm of rationality if we can justify the claim that scientific change is rationally explicable.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.2)
We do not wish merely to predict, we also want to explain [Newton-Smith]
     Full Idea: We do not wish merely to predict, we also want to explain.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.3)
The real problem of science is how to choose between possible explanations [Newton-Smith]
     Full Idea: Once we move beyond investigating correlations between observables the question of what does or should guide our choice between alternative explanatory accounts becomes problematic.
     From: W.H. Newton-Smith (The Rationality of Science [1981], IX.2)
1. Philosophy / G. Scientific Philosophy / 2. Positivism
Critics attack positivist division between theory and observation [Newton-Smith]
     Full Idea: The critics of positivism attacked the conception of a dichotomy between theory and observation.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
Positivists hold that theoretical terms change, but observation terms don't [Newton-Smith]
     Full Idea: For positivists it was taken that while theory change meant change in the meaning of theoretical terms, the meaning of observational terms was invariant under theory change.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
3. Truth / A. Truth Problems / 6. Verisimilitude
More truthful theories have greater predictive power [Newton-Smith]
     Full Idea: If a theory is a better approximation to the truth, then it is likely that it will have greater predictive power.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VIII.8)
Theories generate infinite truths and falsehoods, so they cannot be used to assess probability [Newton-Smith]
     Full Idea: We cannot explicate a useful notion of verisimilitude in terms of the number of truths and the number of falsehoods generated by a theory, because they are infinite.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.4)
10. Modality / C. Sources of Modality / 1. Sources of Necessity
De re necessity arises from the way the world is [Newton-Smith]
     Full Idea: A necessary truth is 'de re' if its necessity arises from the way the world is.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.6)
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
We must assess the truth of beliefs in identifying them [Newton-Smith]
     Full Idea: We cannot determine what someone's beliefs are independently of assessing to some extent the truth or falsity of the beliefs.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.4)
13. Knowledge Criteria / E. Relativism / 6. Relativism Critique
Defeat relativism by emphasising truth and reference, not meaning [Newton-Smith]
     Full Idea: The challenge of incommensurability can be met once it is realised that in comparing theories the notions of truth and reference are more important than that of meaning.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.6)
14. Science / A. Basis of Science / 1. Observation
A full understanding of 'yellow' involves some theory [Newton-Smith]
     Full Idea: A full grasp of the concept '…is yellow' involves coming to accept as true bits of theory; that is, generalisations involving the term 'yellow'.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.2)
14. Science / A. Basis of Science / 5. Anomalies
All theories contain anomalies, and so are falsified! [Newton-Smith]
     Full Idea: According to Feyerabend all theories are born falsified, because no theory has ever been totally free of anomalies.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
The anomaly of Uranus didn't destroy Newton's mechanics - it led to Neptune's discovery [Newton-Smith]
     Full Idea: When scientists observed the motion of Uranus, they did not give up on Newtonian mechanics. Instead they posited the existence of Neptune.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
Anomalies are judged against rival theories, and support for the current theory [Newton-Smith]
     Full Idea: Whether to reject an anomaly has to be decided on the basis of the availability of a rival theory, and on the basis of the positive evidence for the theory in question.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
14. Science / B. Scientific Theories / 1. Scientific Theory
Why should it matter whether or not a theory is scientific? [Newton-Smith]
     Full Idea: Why should it be so important to distinguish between theories that are scientific and those that are not?
     From: W.H. Newton-Smith (The Rationality of Science [1981], IV.3)
14. Science / B. Scientific Theories / 5. Commensurability
If theories are really incommensurable, we could believe them all [Newton-Smith]
     Full Idea: If theories are genuinely incommensurable why should I be faced with the problem of choosing between them? Why not believe them all?
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.1)
15. Nature of Minds / C. Capacities of Minds / 9. Perceiving Causation
Either causal relations are given in experience, or they are unobserved and theoretical [Sosa/Tooley]
     Full Idea: There is a fundamental choice between the realist approach to causation which says that the relation is immediately given in experience, and the view that causation is a theoretical relation, and so not directly observable.
     From: E Sosa / M Tooley (Introduction to 'Causation' [1993], §1)
     A reaction: Even if immediate experience is involved, there is a step of abstraction in calling it a cause, and picking out events. A 'theoretical relation' is not of much interest there if no observations are involved. I don't think a choice is required here.
20. Action / C. Motives for Action / 3. Acting on Reason / c. Reasons as causes
Explaining an action is showing that it is rational [Newton-Smith]
     Full Idea: To explain an action as an action is to show that it is rational.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.2)
22. Metaethics / B. Value / 2. Values / e. Death
The soul conserves the body, as we see by its dissolution when the soul leaves [Toletus]
     Full Idea: Every accident of a living thing, as well as all its organs and temperaments and its dispositions are conserved by the soul. We see this from experience, since when that soul recedes, all these dissolve and become corrupted.
     From: Franciscus Toletus (Commentary on 'De Anima' [1572], II.1.1), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 24.5
     A reaction: A nice example of observing a phenemonon, but not being able to observe the dependence relation the right way round. Compare Descartes in Idea 16763.
26. Natural Theory / C. Causation / 1. Causation
The problem is to explain how causal laws and relations connect, and how they link to the world [Sosa/Tooley]
     Full Idea: Causal states of affairs encompass causal laws, and causal relations between events or states of affairs; two key questions concern the relation between causal laws and causal relations, and the relation between these and non-causal affairs.
     From: E Sosa / M Tooley (Introduction to 'Causation' [1993], §1)
     A reaction: This is the agenda for modern analytical philosophy. I'm not quite clear what would count as an answer. When have you 'explained' a relation? Does calling it 'gravity', or finding an equation, explain that relation? Do gravitinos explain it?
26. Natural Theory / C. Causation / 4. Naturalised causation
Causation isn't energy transfer, because an electron is caused by previous temporal parts [Sosa/Tooley]
     Full Idea: The temporal parts of an electron (for example) are causally related, but this relation does not involve any transfer of energy or momentum. Causation cannot be identified with physical energy relations, and physicalist reductions look unpromising.
     From: E Sosa / M Tooley (Introduction to 'Causation' [1993], §1)
     A reaction: This idea, plus Idea 8327, are their grounds for rejecting Fair's proposal (Idea 8326). It feels like a different use of 'cause' when we say 'the existence of x was caused by its existence yesterday'. It is more like inertia. Destruction needs energy.
If direction of causation is just direction of energy transfer, that seems to involve causation [Sosa/Tooley]
     Full Idea: The objection to Fair's view that the direction of causation is the direction of the transference of energy and/or momentum is that the concept of transference itself involves the idea of causation.
     From: E Sosa / M Tooley (Introduction to 'Causation' [1993], §1)
     A reaction: Does it? If a particle proceeds from a to b, how is that causation? ...But the problem is that the particle kicks open the door when it arrives (i.e. makes changes). We wouldn't call it causation if the transference didn't change any properties.
26. Natural Theory / C. Causation / 8. Particular Causation / c. Conditions of causation
Are causes sufficient for the event, or necessary, or both? [Sosa/Tooley]
     Full Idea: An early view of causation (Mill and Hume) is whatever is (ceteris paribus) sufficient for the event. A second view (E.Nagel) is that the cause should just be necessary. Some (R.Taylor) even contemplate the cause having to be necessary and sufficient.
     From: E Sosa / M Tooley (Introduction to 'Causation' [1993], §2)
     A reaction: A cause can't be necessary if there is some other way to achieve the effect. A single cause is not sufficient if many other factors are also essential. If neither of those is right, then 'both' is wrong. Enter John Mackie...
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
The dominant view is that causal laws are prior; a minority say causes can be explained singly [Sosa/Tooley]
     Full Idea: The dominant view is that causal laws are more basic than causal relations, with relations being logically supervenient on causal laws, and on properties and event relations; some, though, defend the singularist view, in which events alone can be related.
     From: E Sosa / M Tooley (Introduction to 'Causation' [1993], §1)
     A reaction: I am deeply suspicious about laws (see Idea 5470). I suspect that the laws are merely descriptions of the regularities that arise from the single instances of causation. We won't explain the single instances, but then laws don't 'explain' them either.