Combining Texts

All the ideas for 'The Rationality of Science', 'Introduction to 'Absolute Generality'' and 'Postscripts on supervenience'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
For science to be rational, we must explain scientific change rationally [Newton-Smith]
     Full Idea: We are only justified in regarding scientific practice as the very paradigm of rationality if we can justify the claim that scientific change is rationally explicable.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.2)
We do not wish merely to predict, we also want to explain [Newton-Smith]
     Full Idea: We do not wish merely to predict, we also want to explain.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.3)
The real problem of science is how to choose between possible explanations [Newton-Smith]
     Full Idea: Once we move beyond investigating correlations between observables the question of what does or should guide our choice between alternative explanatory accounts becomes problematic.
     From: W.H. Newton-Smith (The Rationality of Science [1981], IX.2)
1. Philosophy / G. Scientific Philosophy / 2. Positivism
Critics attack positivist division between theory and observation [Newton-Smith]
     Full Idea: The critics of positivism attacked the conception of a dichotomy between theory and observation.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
Positivists hold that theoretical terms change, but observation terms don't [Newton-Smith]
     Full Idea: For positivists it was taken that while theory change meant change in the meaning of theoretical terms, the meaning of observational terms was invariant under theory change.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
3. Truth / A. Truth Problems / 6. Verisimilitude
More truthful theories have greater predictive power [Newton-Smith]
     Full Idea: If a theory is a better approximation to the truth, then it is likely that it will have greater predictive power.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VIII.8)
Theories generate infinite truths and falsehoods, so they cannot be used to assess probability [Newton-Smith]
     Full Idea: We cannot explicate a useful notion of verisimilitude in terms of the number of truths and the number of falsehoods generated by a theory, because they are infinite.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.4)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
The two best understood conceptions of set are the Iterative and the Limitation of Size [Rayo/Uzquiano]
     Full Idea: The two best understood conceptions of set are the Iterative Conception and the Limitation of Size Conception.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
Some set theories give up Separation in exchange for a universal set [Rayo/Uzquiano]
     Full Idea: There are set theories that countenance exceptions to the Principle of Separation in exchange for a universal set.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
We could have unrestricted quantification without having an all-inclusive domain [Rayo/Uzquiano]
     Full Idea: The possibility of unrestricted quantification does not immediately presuppose the existence of an all-inclusive domain. One could deny an all-inclusive domain but grant that some quantifications are sometimes unrestricted.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.1)
     A reaction: Thus you can quantify over anything you like, but only from what is available. Eat what you like (in this restaurant).
Absolute generality is impossible, if there are indefinitely extensible concepts like sets and ordinals [Rayo/Uzquiano]
     Full Idea: There are doubts about whether absolute generality is possible, if there are certain concepts which are indefinitely extensible, lacking definite extensions, and yielding an ever more inclusive hierarchy. Sets and ordinals are paradigm cases.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.1)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Perhaps second-order quantifications cover concepts of objects, rather than plain objects [Rayo/Uzquiano]
     Full Idea: If one thought of second-order quantification as quantification over first-level Fregean concepts [note: one under which only objects fall], talk of domains might be regimented as talk of first-level concepts, which are not objects.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
     A reaction: That is (I take it), don't quantify over objects, but quantify over concepts, but only those under which known objects fall. One might thus achieve naïve comprehension without paradoxes. Sound like fun.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
Supervenience is not a dependence relation, on the lines of causal, mereological or semantic dependence [Kim]
     Full Idea: It is a mistake, or at least misleading, to think of supervenience itself as a special and distinctive type of dependence relation, alongside causal dependence, mereological dependence, semantic dependence, and others.
     From: Jaegwon Kim (Postscripts on supervenience [1993], 2)
     A reaction: The point, I take it, is that supervenience is something which requires explanation, rather than being a conclusion to the debate. Why are statues beautiful? Why do brains generate minds?
Supervenience is just a 'surface' relation of pattern covariation, which still needs deeper explanation [Kim]
     Full Idea: Supervenience itself is not an explanatory relation, not a 'deep' metaphysical relation; rather it is a 'surface' relation that reports a pattern of property covariation, suggesting the presence of an interesting dependency relation that might explain it.
     From: Jaegwon Kim (Postscripts on supervenience [1993], 2)
     A reaction: I think the underlying idea here is that supervenience appeals to the Humean view of physical laws as mere regularities, but it is no good for those who seek underlying mechanisms to explain the patterns and regularities. Humeans are wrong.
10. Modality / C. Sources of Modality / 1. Sources of Necessity
De re necessity arises from the way the world is [Newton-Smith]
     Full Idea: A necessary truth is 'de re' if its necessity arises from the way the world is.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.6)
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
We must assess the truth of beliefs in identifying them [Newton-Smith]
     Full Idea: We cannot determine what someone's beliefs are independently of assessing to some extent the truth or falsity of the beliefs.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.4)
13. Knowledge Criteria / E. Relativism / 6. Relativism Critique
Defeat relativism by emphasising truth and reference, not meaning [Newton-Smith]
     Full Idea: The challenge of incommensurability can be met once it is realised that in comparing theories the notions of truth and reference are more important than that of meaning.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.6)
14. Science / A. Basis of Science / 1. Observation
A full understanding of 'yellow' involves some theory [Newton-Smith]
     Full Idea: A full grasp of the concept '…is yellow' involves coming to accept as true bits of theory; that is, generalisations involving the term 'yellow'.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.2)
14. Science / A. Basis of Science / 5. Anomalies
All theories contain anomalies, and so are falsified! [Newton-Smith]
     Full Idea: According to Feyerabend all theories are born falsified, because no theory has ever been totally free of anomalies.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
The anomaly of Uranus didn't destroy Newton's mechanics - it led to Neptune's discovery [Newton-Smith]
     Full Idea: When scientists observed the motion of Uranus, they did not give up on Newtonian mechanics. Instead they posited the existence of Neptune.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
Anomalies are judged against rival theories, and support for the current theory [Newton-Smith]
     Full Idea: Whether to reject an anomaly has to be decided on the basis of the availability of a rival theory, and on the basis of the positive evidence for the theory in question.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
14. Science / B. Scientific Theories / 1. Scientific Theory
Why should it matter whether or not a theory is scientific? [Newton-Smith]
     Full Idea: Why should it be so important to distinguish between theories that are scientific and those that are not?
     From: W.H. Newton-Smith (The Rationality of Science [1981], IV.3)
14. Science / B. Scientific Theories / 5. Commensurability
If theories are really incommensurable, we could believe them all [Newton-Smith]
     Full Idea: If theories are genuinely incommensurable why should I be faced with the problem of choosing between them? Why not believe them all?
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.1)
19. Language / F. Communication / 5. Pragmatics / a. Contextual meaning
The domain of an assertion is restricted by context, either semantically or pragmatically [Rayo/Uzquiano]
     Full Idea: We generally take an assertion's domain of discourse to be implicitly restricted by context. [Note: the standard approach is that this restriction is a semantic phenomenon, but Kent Bach (2000) argues that it is a pragmatic phenomenon]
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.1)
     A reaction: I think Kent Bach is very very right about this. Follow any conversation, and ask what the domain is at any moment. The reference of a word like 'they' can drift across things, with no semantics to guide us, but only clues from context and common sense.
20. Action / C. Motives for Action / 3. Acting on Reason / c. Reasons as causes
Explaining an action is showing that it is rational [Newton-Smith]
     Full Idea: To explain an action as an action is to show that it is rational.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.2)