Combining Texts

All the ideas for 'The Rationality of Science', 'Mapping the Mind' and 'Structures and Structuralism in Phil of Maths'

unexpand these ideas     |    start again     |     specify just one area for these texts


54 ideas

1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
For science to be rational, we must explain scientific change rationally [Newton-Smith]
     Full Idea: We are only justified in regarding scientific practice as the very paradigm of rationality if we can justify the claim that scientific change is rationally explicable.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.2)
We do not wish merely to predict, we also want to explain [Newton-Smith]
     Full Idea: We do not wish merely to predict, we also want to explain.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.3)
The real problem of science is how to choose between possible explanations [Newton-Smith]
     Full Idea: Once we move beyond investigating correlations between observables the question of what does or should guide our choice between alternative explanatory accounts becomes problematic.
     From: W.H. Newton-Smith (The Rationality of Science [1981], IX.2)
1. Philosophy / G. Scientific Philosophy / 2. Positivism
Critics attack positivist division between theory and observation [Newton-Smith]
     Full Idea: The critics of positivism attacked the conception of a dichotomy between theory and observation.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
Positivists hold that theoretical terms change, but observation terms don't [Newton-Smith]
     Full Idea: For positivists it was taken that while theory change meant change in the meaning of theoretical terms, the meaning of observational terms was invariant under theory change.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
3. Truth / A. Truth Problems / 6. Verisimilitude
More truthful theories have greater predictive power [Newton-Smith]
     Full Idea: If a theory is a better approximation to the truth, then it is likely that it will have greater predictive power.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VIII.8)
Theories generate infinite truths and falsehoods, so they cannot be used to assess probability [Newton-Smith]
     Full Idea: We cannot explicate a useful notion of verisimilitude in terms of the number of truths and the number of falsehoods generated by a theory, because they are infinite.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.4)
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
7. Existence / E. Categories / 2. Categorisation
Brain lesions can erase whole categories of perception, suggesting they are hard-wired [Carter,R]
     Full Idea: The discovery that a single brain lesion can erase all knowledge of man-made artefacts, or all knowledge of animals, suggests that these categories somehow hard-wired into the brain - that we all have a set of 'memory pigeonholes'.
     From: Rita Carter (Mapping the Mind [1998], p.190)
     A reaction: Presumably something can become 'hard-wired' through experience, rather than from birth. The whole idea of 'hard-wired' seems misleading about the brain. What matters is that the brain physically constructs categories.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
10. Modality / C. Sources of Modality / 1. Sources of Necessity
De re necessity arises from the way the world is [Newton-Smith]
     Full Idea: A necessary truth is 'de re' if its necessity arises from the way the world is.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.6)
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
We must assess the truth of beliefs in identifying them [Newton-Smith]
     Full Idea: We cannot determine what someone's beliefs are independently of assessing to some extent the truth or falsity of the beliefs.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.4)
12. Knowledge Sources / B. Perception / 5. Interpretation
Sense organs don't discriminate; they reduce various inputs to the same electrical pulses [Carter,R]
     Full Idea: Despite their variety, each sense organ translates its stimulus into electrical pulses; rather than discriminating one type of input from another, the sense organs actually make them more alike.
     From: Rita Carter (Mapping the Mind [1998], p.174)
     A reaction: An illuminating observation, which modern 'naïve realists' should bear in mind. Secondary qualities are entirely unrelated to the nature of the input, and are merely 'what the brain decides to make of it'. Discrimination is in our neurons.
The recognition sequence is: classify, name, locate, associate, feel [Carter,R, by PG]
     Full Idea: The sequence of events in the brain for perceptual recognition is first identifying a rough class for the object, then a name, then a location, then some associations, and finally an emotion.
     From: report of Rita Carter (Mapping the Mind [1998], p.181) by PG - Db (ideas)
     A reaction: This seems to be one of those places where neuro-science trumps philosophy. You can't argue with empirical research, so philosophical theories had better adapt themselves to this sequence. The big modern discovery is the place of emotion in recognition.
12. Knowledge Sources / E. Direct Knowledge / 4. Memory
There seems to be no dividing line between a memory and a thought [Carter,R]
     Full Idea: It has become clear from research that there is no clear dividing line between a memory and a thought.
     From: Rita Carter (Mapping the Mind [1998], p.308)
     A reaction: This always struck me as an obvious criticism of Descartes, when he claimed that memory was not an essential part of the 'thinking thing'. How can you think or understand without memory of the different phases of your thoughts? No memory, no mind!
13. Knowledge Criteria / E. Relativism / 6. Relativism Critique
Defeat relativism by emphasising truth and reference, not meaning [Newton-Smith]
     Full Idea: The challenge of incommensurability can be met once it is realised that in comparing theories the notions of truth and reference are more important than that of meaning.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.6)
14. Science / A. Basis of Science / 1. Observation
A full understanding of 'yellow' involves some theory [Newton-Smith]
     Full Idea: A full grasp of the concept '…is yellow' involves coming to accept as true bits of theory; that is, generalisations involving the term 'yellow'.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.2)
14. Science / A. Basis of Science / 5. Anomalies
All theories contain anomalies, and so are falsified! [Newton-Smith]
     Full Idea: According to Feyerabend all theories are born falsified, because no theory has ever been totally free of anomalies.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
The anomaly of Uranus didn't destroy Newton's mechanics - it led to Neptune's discovery [Newton-Smith]
     Full Idea: When scientists observed the motion of Uranus, they did not give up on Newtonian mechanics. Instead they posited the existence of Neptune.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
Anomalies are judged against rival theories, and support for the current theory [Newton-Smith]
     Full Idea: Whether to reject an anomaly has to be decided on the basis of the availability of a rival theory, and on the basis of the positive evidence for the theory in question.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
14. Science / B. Scientific Theories / 1. Scientific Theory
Why should it matter whether or not a theory is scientific? [Newton-Smith]
     Full Idea: Why should it be so important to distinguish between theories that are scientific and those that are not?
     From: W.H. Newton-Smith (The Rationality of Science [1981], IV.3)
14. Science / B. Scientific Theories / 5. Commensurability
If theories are really incommensurable, we could believe them all [Newton-Smith]
     Full Idea: If theories are genuinely incommensurable why should I be faced with the problem of choosing between them? Why not believe them all?
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.1)
15. Nature of Minds / A. Nature of Mind / 7. Animal Minds
No one knows if animals are conscious [Carter,R]
     Full Idea: No one knows if animals are conscious.
     From: Rita Carter (Mapping the Mind [1998], p.155)
     A reaction: This is a report from the front line of brain research, and should be born in mind when over-confident people make pronouncements about this topic. It strikes me as important to grasp that animals MIGHT not be conscious.
15. Nature of Minds / A. Nature of Mind / 8. Brain
Pain doesn't have one brain location, but is linked to attention and emotion [Carter,R]
     Full Idea: Scans show there is no such thing as a pain centre; pain springs mainly from the activation of areas associated with attention and emotion.
     From: Rita Carter (Mapping the Mind [1998], p. 12)
     A reaction: Most brain research points to the complex multi-layered nature of experiences that were traditionally considered simple. We can be distracted from a pain, and an enormous number of factors can affect our degree of dislike of a given pain.
Proper brains appear at seven weeks, and neonates have as many neurons as adults do [Carter,R]
     Full Idea: The main sections of the brain, including the cerebral cortex, are visible within seven weeks of conception, and by the time the child is born the brain contains as many neurons - about 100 billion - as it will have as an adult.
     From: Rita Carter (Mapping the Mind [1998], p. 17)
     A reaction: Of interest in the abortion debate, and also in thinking about personal identity. However, it seems clear that the number of connections, rather than neurons, is what really matters. A small infant may well lack personal identity.
In primates, brain size correlates closely with size of social group [Carter,R]
     Full Idea: Brain size in primates is closely associated with the size of the social group in which the animal lives.
     From: Rita Carter (Mapping the Mind [1998], p.257)
     A reaction: Intriguing. Humans can have huge social groups because of language, which suggests a chicken-or-egg question. Language, intelligence and size of social group must have expanded together in humans.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / c. Parts of consciousness
Consciousness involves awareness, perception, self-awareness, attention and reflection [Carter,R]
     Full Idea: Awareness, perception, self-awareness, attention and reflection are all separate components of consciousness, and the quality of our experience varies according to which and how many of them are present.
     From: Rita Carter (Mapping the Mind [1998], p.300)
     A reaction: Philosophers like to emphasise 'qualia' and 'intentionality'. This remark slices the cake differently. 'Attention' is interesting, dividing consciousness into two areas, with some experience fading away into the darkness. Hume denied self-awareness.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / e. Cause of consciousness
There is enormous evidence that consciousness arises in the frontal lobes of the brain [Carter,R]
     Full Idea: A huge volume of evidence suggests that consciousness emerges from the activity of the cerebral cortex, and in particular from the frontal lobes.
     From: Rita Carter (Mapping the Mind [1998], p.298)
     A reaction: Dualists must face up to this, and even many physicalists have a rather vague notion about the location of awareness, but we are clearly homing in very precise physical substances which have consciousness as a feature.
15. Nature of Minds / B. Features of Minds / 5. Qualia / a. Nature of qualia
Normal babies seem to have overlapping sense experiences [Carter,R]
     Full Idea: Connections in a baby's brain probably give the infant the experience of 'seeing' sounds and 'hearing' colours - which occasionally continues into adulthood, where it is known as 'synaesthesia'.
     From: Rita Carter (Mapping the Mind [1998], p. 19)
     A reaction: A fact to remember when discussing secondary qualities, and the relativism involved in the way we perceive the world. If you have done your philosophy right, you shouldn't be surprised by this discovery.
15. Nature of Minds / B. Features of Minds / 7. Blindsight
In blindsight V1 (normal vision) is inactive, but V5 (movement) lights up [Carter,R]
     Full Idea: Scans show that a sub-section of the visual cortex called V5 - the area that registers movement - lights up during blindsight, even though V1 - the primary sensory area that is essential for normal sight - is not active.
     From: Rita Carter (Mapping the Mind [1998], p.307)
     A reaction: The whole point of blindsight is to make us realise that vision involves not one module, but a whole team of them. The inference is that V1 involves consciousness, but other areas of the visual cortex don't.
17. Mind and Body / A. Mind-Body Dualism / 8. Dualism of Mind Critique
Out-of-body experiences may be due to temporary loss of proprioception [Carter,R]
     Full Idea: Out-of-body experiences may be due to temporary loss of proprioception.
     From: Rita Carter (Mapping the Mind [1998], p.187)
     A reaction: This is only a speculation, but it is an effect which can be caused by brain injury, and dualists should face the possibility that this evidence (prized by many dualists) can have a physical explanation.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Scans of brains doing similar tasks produce very similar patterns of activation [Carter,R]
     Full Idea: The pattern of brain activation during, say, a word retrieval task is usually similar enough among the dozen or so participants who typically take part in such studies for their scans to be overlaid and still show a clear pattern.
     From: Rita Carter (Mapping the Mind [1998], p. 17)
     A reaction: This doesn't surprise me, though it could be interpreted as supporting type-type identity, or as supporting functionalism. Armstrong and Lewis endorse a sort of reductive functionalism which would fit this observation.
Thinking takes place on the upper side of the prefrontal cortex [Carter,R]
     Full Idea: The nuts and bolts of thinking - holding ideas in mind and manipulating them - takes place on the upper side of the prefrontal cortex.
     From: Rita Carter (Mapping the Mind [1998], p.312)
     A reaction: Keep this firmly in view! Imagine that the skull is transparent, and brain activity moves in waves of colour. Dualism would, in those circumstances, never have even occurred to anyone.
18. Thought / A. Modes of Thought / 3. Emotions / a. Nature of emotions
Babies show highly emotional brain events, but may well be unaware of them [Carter,R]
     Full Idea: Babies show emotion dramatically, but the areas of the brain that in adults are linked to the conscious experience of emotions are not active in newborn babies. Such emotions may therefore be unconscious.
     From: Rita Carter (Mapping the Mind [1998], p. 19)
     A reaction: Traditionally, 'unconscious emotion' is a contradiction, but I think we should accept this new evidence and rethink the nature of mind. Not only might emotion be non-conscious, but we should even consider that rational thinking could be too.
18. Thought / A. Modes of Thought / 3. Emotions / g. Controlling emotions
The only way we can control our emotions is by manipulating the outside world that influences them [Carter,R]
     Full Idea: We try to manipulate our emotions all the time, but all we are doing is arranging the outside world so it triggers certain emotions - we cannot control our reactions directly.
     From: Rita Carter (Mapping the Mind [1998], p.155)
     A reaction: This seems to me to throw a very illuminating light on a huge amount of human behaviour, such as going to the cinema or listening to music. The romantic movement encouraged direct internal manipulation. Compare sex fantasies with viewing pornography.
18. Thought / A. Modes of Thought / 5. Rationality / c. Animal rationality
A frog will starve to death surrounded by dead flies [Carter,R]
     Full Idea: A frog will starve to death surrounded by dead flies.
     From: Rita Carter (Mapping the Mind [1998], p.195)
     A reaction: A nice warning against assuming that rationality is operating when a frog feels hungry and 'decides' to have lunch. We should take comfort from the fact that humans are NOT this stupid, and philosophers should try to accurately describe our gift.
20. Action / C. Motives for Action / 3. Acting on Reason / c. Reasons as causes
Explaining an action is showing that it is rational [Newton-Smith]
     Full Idea: To explain an action as an action is to show that it is rational.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.2)
22. Metaethics / C. The Good / 3. Pleasure / d. Sources of pleasure
The 'locus coeruleus' is one of several candidates for the brain's 'pleasure centre' [Carter,R]
     Full Idea: Noradrenaline is an excitatory chemical that induces physical and mental arousal and heightens mood. Production is centred in an area of the brain called the locus coeruleus, which is one of several candidates for the brain's 'pleasure' centre.
     From: Rita Carter (Mapping the Mind [1998], p. 30)
     A reaction: It seems to me very morally desirable that people understand facts of this kind, so that they can be more objective about pleasure. Pleasure is one cog in the machine that makes a person, not the essence of human life.