Combining Texts

All the ideas for 'Reply to Professor Marcus', 'Models' and 'The Nature and Communication of Substance'

unexpand these ideas     |    start again     |     specify just one area for these texts


10 ideas

5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Either reference really matters, or we don't need to replace it with substitutions [Quine]
     Full Idea: When we reconstrue quantification in terms of substituted expressions rather than real values, we waive reference. ...but if reference matters, we cannot afford to waive it as a category; and if it does not, we do not need to.
     From: Willard Quine (Reply to Professor Marcus [1962], p.183)
     A reaction: An odd dilemma to pose. Presumably the substitution account is an attempt to explain how language actually works, without mentioning dubious direct ontological commitment in the quantifiers.
14. Science / B. Scientific Theories / 7. Scientific Models
Theoretical models can represent, by mapping onto the data-models [Portides]
     Full Idea: The semantic approach contends that theoretical models ...are candidates for representing physical systems by virtue of the fact that they stand in mapping relations to corresponding data-models.
     From: Demetris Portides (Models [2008], 'Current')
     A reaction: Sounds like a neat and satisfying picture.
In the 'received view' models are formal; the 'semantic view' emphasises representation [Portides, by PG]
     Full Idea: The 'received view' of models is that they are Tarskian formal axiomatic calculi interpreted by meta-mathematical models. The 'semantic' view of models gives equal importance to their representational capacity.
     From: report of Demetris Portides (Models [2008], 'background') by PG - Db (ideas)
     A reaction: The Tarskian view is the one covered in my section on Model Theory. Portides favours the semantic account, and I am with him all the way. Should models primarily integrate with formal systems, or with the world? Your choice...
Representational success in models depends on success of their explanations [Portides]
     Full Idea: Models are representational, independently of the strength of their relation to theory, depending on how well they achieve the purpose of providing explanations for what occurs in physical systems.
     From: Demetris Portides (Models [2008], 'Current')
     A reaction: This doesn't sound quite right. It seems possible to have a perfect representation of a system which remains quite baffling (because too complex, or with obscure ingredients). Does the stylised London tube map explain well but represent badly?
The best model of the atomic nucleus is the one which explains the most results [Portides]
     Full Idea: The unified model can be considered a better representation of the atomic nucleus in comparison to the liquid-drop and shell models, because it explains most of the known results about the nucleus.
     From: Demetris Portides (Models [2008], 'Current')
     A reaction: The point here is that models are evaluated not just by their accuracy, but by their explanatory power. Presumably a great model is satisfying and illuminating. Do the best models capture the essence of a thing?
'Model' belongs in a family of concepts, with representation, idealisation and abstraction [Portides]
     Full Idea: A better understanding of 'model', as used in science, could be achieved if we examine it as a member of the triad of concepts of representation, idealisation and abstraction.
     From: Demetris Portides (Models [2008], 'Intro')
     A reaction: Abstraction seems to have a bad name in philosophy, and yet when you come to discuss things like models, you can't express it any other way.
Models are theory-driven, or phenomenological (more empirical and specific) [Portides]
     Full Idea: 'Theory-driven' models are constructed in a systematic theory-regulated way by supplementing the theoretical calculus with locally operative hypotheses. 'Phenomenological' models deploy semi-empirical results, with ad hoc hypotheses, and extra concepts.
     From: Demetris Portides (Models [2008], 'Intro')
     A reaction: [compressed] I am not at all clear about this distinction, even after reading his whole article. The first type of model seems more general, while the second seems tuned to particular circumstances. He claims the second type is more explanatory.
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
General theories may be too abstract to actually explain the mechanisms [Portides]
     Full Idea: If theoretical models are highly abstract and idealised descriptions of phenomena, they may only represent general features, and fail to explain the specific mechanisms at work in physical systems.
     From: Demetris Portides (Models [2008], 'Current')
     A reaction: [compressed] While there may be an ideal theory that explains everything, it sounds right capturing the actual mechanism (such as the stirrup bone in the ear) is not at all theoretical.
17. Mind and Body / A. Mind-Body Dualism / 5. Parallelism
Maybe mind and body are parallel, like two good clocks [Leibniz]
     Full Idea: Two clocks in perfect agreement must be by natural influence, or the control of a craftsman, or their perfect construction at the beginning. Only the third way (of "preestablished harmony" by God) is possible.
     From: Gottfried Leibniz (The Nature and Communication of Substance [1690], p.121)
     A reaction: Presumably 'natural influence' would cover the possibility that (unnoticed by you, apparently) one clock is attached to the other clock at the relevant points. If they are unconnected, presumably they are quite unaware of one another's existence.
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
If the universe is a perfect agreement of uncommunicating substances, there must be a common source [Leibniz]
     Full Idea: The perfect agreement of so many substances which have no communication whatever with each other can only come from a common source.
     From: Gottfried Leibniz (The Nature and Communication of Substance [1690], p.120)