Combining Texts

All the ideas for 'Natural Kinds', 'Truth Rehabilitated' and 'Laws in Nature'

unexpand these ideas     |    start again     |     specify just one area for these texts


52 ideas

1. Philosophy / D. Nature of Philosophy / 6. Hopes for Philosophy
Science studies phenomena, but only metaphysics tells us what exists [Mumford]
     Full Idea: Science deals with the phenomena, ..but it is metaphysics, and only metaphysics, that tells us what ultimately exists.
     From: Stephen Mumford (Laws in Nature [2004], 01.2)
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophy is continuous with science, and has no external vantage point [Quine]
     Full Idea: I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boat. …There is no external vantage point, no first philosophy.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: Philosophy is generalisation. Science holds the upper hand, because it settles the subject-matter to be generalised.
2. Reason / A. Nature of Reason / 1. On Reason
Many forms of reasoning, such as extrapolation and analogy, are useful but deductively invalid [Mumford]
     Full Idea: There are many forms of reasoning - extrapolation, interpolation, and other arguments from analogy - that are useful but deductively invalid.
     From: Stephen Mumford (Laws in Nature [2004], 04.4)
     A reaction: [He cites Molnar for this]
3. Truth / A. Truth Problems / 3. Value of Truth
Without truth, both language and thought are impossible [Davidson]
     Full Idea: Without a grasp of the concept of truth, not only language, but thought itself, is impossible.
     From: Donald Davidson (Truth Rehabilitated [1997], p.16)
     A reaction: Davidson never mentions animals, but I like this idea because it points to importance of truth for animals as well. I say that truth is relevant to any mind that makes judgements - and quite small animals (e.g. ants and spiders) make judgements.
Plato's Forms confused truth with the most eminent truths, so only Truth itself is completely true [Davidson]
     Full Idea: Plato's conflation of abstract universals with entities of supreme value reinforced the confusion of truth with the most eminent truths. …The only perfect exemplar of a Form is the Form itself, …and only truth itself is completely true.
     From: Donald Davidson (Truth Rehabilitated [1997], p.3)
     A reaction: Even non-subscribers to Plato often talk as if there were some grand thing called the Truth with a capital T, quite often used in a religious context. Truth is the hallmark of successful (non-fanciful) thought.
Truth can't be a goal, because we can neither recognise it nor confim it [Davidson]
     Full Idea: Since it is neither visible as a target, nor recognisable when achieved, there is no point in calling truth a goal. We should only aim at increasing confidence in our beliefs, by collecting further evidence or checking our calculations.
     From: Donald Davidson (Truth Rehabilitated [1997], P.6)
     A reaction: This is mainly aimed at pragmatists, but Davidson obviously subscribes (as do I) to their fallibilist view of knowledge.
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
Correspondence can't be defined, but it shows how truth depends on the world [Davidson]
     Full Idea: Correspondence, while it is empty as a definition, does capture the thought that truth depends on how the world is.
     From: Donald Davidson (Truth Rehabilitated [1997], p.16)
     A reaction: Just don't try to give a precise account of the correspondence between two things (thoughts and facts) which are so utterly different in character.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
When Tarski defines truth for different languages, how do we know it is a single concept? [Davidson]
     Full Idea: We have to wonder how we know that it is some single concept which Tarski indicates how to define for each of a number of well-behaved languages.
     From: Donald Davidson (Truth Rehabilitated [1997], P.11)
     A reaction: Davidson says that Tarski makes the assumption that it is a single concept, but fails to demonstrate the fact. This resembles Frege's Julius Caesar problem - of how you know whether your number definition has defined a number.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Disquotation only accounts for truth if the metalanguage contains the object language [Davidson]
     Full Idea: Disquotation cannot pretend to give a complete account of the concept of truth, since it works only in the special case where the metalanguage contains the object language. Neither can contain their own truth predicate.
     From: Donald Davidson (Truth Rehabilitated [1997], p.10)
     A reaction: Presumably more sophisticated and complete accounts would need a further account of translation between languages - which explains Quine's interest in that topic. […see this essay, p.12]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Klein summarised geometry as grouped together by transformations [Quine]
     Full Idea: Felix Klein's so-called 'Erlangerprogramm' in geometry involved characterizing the various branches of geometry by what transformations were irrelevant to each.
     From: Willard Quine (Natural Kinds [1969], p.137)
7. Existence / A. Nature of Existence / 1. Nature of Existence
For Humeans the world is a world primarily of events [Mumford]
     Full Idea: For Humeans the world is a world primarily of events.
     From: Stephen Mumford (Laws in Nature [2004], 03.6)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass terms just concern spread, but other terms involve both spread and individuation [Quine]
     Full Idea: 'Yellow' and 'water' are mass terms, concerned only with spread; 'apple' and 'square' are terms of divided reference, concerned with both spread and individuation.
     From: Willard Quine (Natural Kinds [1969], p.124)
     A reaction: Would you like some apple? Pass me that water. It is helpful to see that it is a requirement of 'individuation' that is missing from terms for stuff.
7. Existence / D. Theories of Reality / 8. Facts / e. Facts rejected
If we try to identify facts precisely, they all melt into one (as the Slingshot Argument proves) [Davidson]
     Full Idea: If we try to provide a serious semantics for reference to facts, we discover that they melt into one; there is no telling them apart. The relevant argument (the 'Slingshot') was credited to Frege by Alonso Church.
     From: Donald Davidson (Truth Rehabilitated [1997], p.5)
     A reaction: This sounds like good grounds for not attempting to be too precise. 'There are bluebells in my local wood' identifies a fact by words, but even an animal can distinguish this fact. Only a logician dreams of making its content precise.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
Properties are just natural clusters of powers [Mumford]
     Full Idea: The view of properties I find most attractive is one in which they are natural clusters of, and exhausted by, powers (plus other connections to other properties).
     From: Stephen Mumford (Laws in Nature [2004], 10.6)
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Once we know the mechanism of a disposition, we can eliminate 'similarity' [Quine]
     Full Idea: Once we can legitimize a disposition term by defining the relevant similarity standard, we are apt to know the mechanism of the disposition, and so by-pass the similarity.
     From: Willard Quine (Natural Kinds [1969], p.135)
     A reaction: I love mechanisms, but can we characterise mechanisms without mentioning powers and dispositions? Quine's dream is to eliminate 'similarity'.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
We judge things to be soluble if they are the same kind as, or similar to, things that do dissolve [Quine]
     Full Idea: Intuitively, what qualifies a thing as soluble though it never gets into water is that it is of the same kind as the things that actually did or will dissolve; it is similar to them.
     From: Willard Quine (Natural Kinds [1969], p.130)
     A reaction: If you can judge that the similar things 'will' dissolve, you can cut to the chase and judge that this thing will dissolve.
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
A 'porridge' nominalist thinks we just divide reality in any way that suits us [Mumford]
     Full Idea: A 'porridge' nominalist denies natural kinds, and thinks there are no objective divisions in reality, so concepts or words can be used by a community to divide the world up in any way that suits their purposes.
     From: Stephen Mumford (Laws in Nature [2004], 07.3)
8. Modes of Existence / E. Nominalism / 2. Resemblance Nominalism
If properties are clusters of powers, this can explain why properties resemble in degrees [Mumford]
     Full Idea: If a cluster of ten powers exhausts property F, and property G differs in respect of just one power, this might explain why properties can resemble other properties and in different degrees.
     From: Stephen Mumford (Laws in Nature [2004], 10.6)
     A reaction: I love this. The most intractable problem about properties and universals is that of abstract reference - pink resembles red more than pink resembles green. If colours are clusters of powers, red and pink share nine out of ten of them.
9. Objects / D. Essence of Objects / 14. Knowledge of Essences
How can we show that a universally possessed property is an essential property? [Mumford]
     Full Idea: Essentialists fail to show how we ascend from being a property universally possessed, by all kind members, to the status of being an essential property.
     From: Stephen Mumford (Laws in Nature [2004], 07.5)
     A reaction: This is precisely where my proposal comes in - the essential properties, as opposed to the accidentaly universals, are those which explain the nature and behaviour of each kind of thing (and each individual thing).
14. Science / A. Basis of Science / 3. Experiment
Science is common sense, with a sophisticated method [Quine]
     Full Idea: Sciences differ from common sense only in the degree of methodological sophistication.
     From: Willard Quine (Natural Kinds [1969], p.129)
     A reaction: Science is normal thinking about the world, but it is teamwork, with the bar set very high.
14. Science / C. Induction / 1. Induction
Induction relies on similar effects following from each cause [Quine]
     Full Idea: Induction expresses our hopes that similar causes will have similar effects.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: Some top philosophers are also top teachers, and Quine was one of them, in his writings. He boils it down for the layman. Once again, he is pointing to the fundamental role of the similarity relation.
Induction is just more of the same: animal expectations [Quine]
     Full Idea: Induction is essentially only more of the same: animal expectation or habit formation.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: My working definition of induction is 'learning from experience', but that doesn't disagree with Quine. Lipton has a richer account of different types of induction. Quine's point is that it rests on resemblance.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Grue is a puzzle because the notions of similarity and kind are dubious in science [Quine]
     Full Idea: What makes Goodman's example a puzzle is the dubious scientific standing of a general notion of similarity, or of kind.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Illuminating. It might be best expressed as revealing a problem with sortal terms, as employed by Geach, or by Wiggins. Grue is a bit silly, but sortals are subject to convention and culture. 'Natural' properties seem needed.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
General terms depend on similarities among things [Quine]
     Full Idea: The usual general term, whether a common noun or a verb or an adjective, owes its generality to some resemblance among the things referred to.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Quine has a nice analysis of the basic role of similarity in a huge amount of supposedly strict scientific thought.
To learn yellow by observation, must we be told to look at the colour? [Quine]
     Full Idea: According to the 'respects' view, our learning of yellow by ostension would have depended on our first having been told or somehow apprised that it was going to be a question of color.
     From: Willard Quine (Natural Kinds [1969], p.122)
     A reaction: Quine suggests there is just one notion of similarity, and respects can be 'abstracted' afterwards. Even the ontologically ruthless Quine admits psychological abstraction!
Standards of similarity are innate, and the spacing of qualities such as colours can be mapped [Quine]
     Full Idea: A standard of similarity is in some sense innate. The spacing of qualities (such as red, pink and blue) can be explored and mapped in the laboratory by experiments. They are needed for all learning.
     From: Willard Quine (Natural Kinds [1969], p.123)
     A reaction: This reasserts Hume's original point in more scientific terms. It is one of the undeniable facts about our perceptions of qualities and properties, no matter how platonist your view of universals may be.
Similarity is just interchangeability in the cosmic machine [Quine]
     Full Idea: Things are similar to the extent that they are interchangeable parts of the cosmic machine.
     From: Willard Quine (Natural Kinds [1969], p.134)
     A reaction: This is a major idea for Quine, because it is a means to gradually eliminate the fuzzy ideas of 'resemblance' or 'similarity' or 'natural kind' from science. I love it! Two tigers are same insofar as they are substitutable.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
Knowing the potential truth conditions of a sentence is necessary and sufficient for understanding [Davidson]
     Full Idea: It is clear that someone who knows under what conditions a sentence would be true understands that sentence, …and if someone does not know under what conditions it would be true then they do not understand it.
     From: Donald Davidson (Truth Rehabilitated [1997], p.13)
     A reaction: I've always subscribed to this view. Langauge is meaningless if you can't relate it to reality, and I don't think there could be a language without an intuitive notion of truth.
19. Language / A. Nature of Meaning / 6. Meaning as Use
It could be that the use of a sentence is explained by its truth conditions [Davidson]
     Full Idea: It may be that sentences are used as they are because of their truth conditions, and they have the truth conditions they do because of how they are used.
     From: Donald Davidson (Truth Rehabilitated [1997], p.13)
     A reaction: I've always taken the attempt to explain meaning by use as absurd. It is similar to trying to explain mind in terms of function. In each case, what is the intrinsic nature of the thing, which makes that use or that function possible?
19. Language / C. Assigning Meanings / 3. Predicates
Projectible predicates can be universalised about the kind to which they refer [Quine]
     Full Idea: 'Projectible' predicates are predicates F and G whose shared instances all do count, for whatever reason, towards confirmation of 'All F are G'. ….A projectible predicate is one that is true of all and only the things of a kind.
     From: Willard Quine (Natural Kinds [1969], p.115-6)
     A reaction: Both Quine and Goodman are infuriatingly brief about the introduction of this concept. 'Red' is true of all ripe tomatoes, but not 'only' of them. Hardly any predicates are true only of one kind. Is that a scholastic 'proprium'?
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Quine probably regrets natural kinds now being treated as essences [Quine, by Dennett]
     Full Idea: The concept of natural kinds was reintroduced by Quine, who may now regret the way it has become a stand-in for the dubious but covertly popular concept of essences.
     From: report of Willard Quine (Natural Kinds [1969]) by Daniel C. Dennett - Consciousness Explained 12.2 n2
     A reaction: He is right that Quine would regret it, and he is right that we can't assume that there are necessary essences just because there seem to be stable natural kinds, but personally I am an essentialist, so I'm not that bothered.
If similarity has no degrees, kinds cannot be contained within one another [Quine]
     Full Idea: If similarity has no degrees there is no containing of kinds within broader kinds. If colored things are a kind, they are similar, but red things are too narrow for a kind. If red things are a kind, colored things are not similar, and it's too broad.
     From: Willard Quine (Natural Kinds [1969], p.118)
     A reaction: [compressed] I'm on Quine's side with this. We glibly talk of 'kinds', but the criteria for sorting things into kinds seems to be a mess. Quine goes on to offer a better account than the (diadic, yes-no) one rejected here.
Comparative similarity allows the kind 'colored' to contain the kind 'red' [Quine]
     Full Idea: With the triadic relation of comparative similarity, kinds can contain one another, as well as overlapping. Red and colored things can both count as kinds. Colored things all resemble one another, even though less than red things do.
     From: Willard Quine (Natural Kinds [1969], p.119)
     A reaction: [compressed] Quine claims that comparative similarity is necessary for kinds - that there be some 'foil' in a similarity - that A is more like C than B is.
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
You can't base kinds just on resemblance, because chains of resemblance are a muddle [Quine]
     Full Idea: If kinds are based on similarity, this has the Imperfect Community problem. Red round, red wooden and round wooden things all resemble one another somehow. There may be nothing outside the set resembling them, so it meets the definition of kind.
     From: Willard Quine (Natural Kinds [1969], p.120)
     A reaction: [ref. to Goodman 'Structure' 2nd 163- , which attacks Carnap on this] This suggests an invocation of Wittgenstein's family resemblance, which won't be much help for natural kinds.
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
Singular causes, and identities, might be necessary without falling under a law [Mumford]
     Full Idea: One might have a singularist view of causation in which a cause necessitates its effect, but they need not be subsumed under a law, ..and there are identities which are metaphysically necessary without being laws of nature.
     From: Stephen Mumford (Laws in Nature [2004], 04.5)
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
We can give up the counterfactual account if we take causal language at face value [Mumford]
     Full Idea: If we take causal language at face value and give up reducing causal concepts to non-causal, non-modal concepts, we can give up the counterfactual dependence account.
     From: Stephen Mumford (Laws in Nature [2004], 10.5)
26. Natural Theory / C. Causation / 9. General Causation / d. Causal necessity
It is only properties which are the source of necessity in the world [Mumford]
     Full Idea: If laws do not give the world necessity, what does? I argue the positive case for it being properties, and properties alone, that do the job (so we might call them 'modal properties').
     From: Stephen Mumford (Laws in Nature [2004], 10.1)
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
There are four candidates for the logical form of law statements [Mumford]
     Full Idea: The contenders for the logical form of a law statement are 1) a universally quantified conditional, 2) a second-order relation between first-order universals, 3) a functional equivalence, and 4) a dispositional characteristic of a natural kind.
     From: Stephen Mumford (Laws in Nature [2004], 10.3)
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
It is hard to see how regularities could be explained [Quine]
     Full Idea: Why there have been regularities is an obscure question, for it is hard to see what would count as an answer.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: This is the standard pessimism of the 20th century Humeans, but it strikes me as comparable to the pessimism about science found in Locke and Hume. Regularities are explained all the time by scientists, though the lowest level may be hopeless.
Would it count as a regularity if the only five As were also B? [Mumford]
     Full Idea: While it might be true that for all x, if Ax then Bx, would we really want to count it as a genuine regularity in nature if only five things were A (and all five were also B)?
     From: Stephen Mumford (Laws in Nature [2004], 03.3)
Regularities are more likely with few instances, and guaranteed with no instances! [Mumford]
     Full Idea: It seems that the fewer the instances, the more likely it is that there be a regularity, ..and if there are no cases at all, and no S is P, that is a regularity.
     From: Stephen Mumford (Laws in Nature [2004], 03.3)
     A reaction: [He attributes the second point to Molnar]
Pure regularities are rare, usually only found in idealized conditions [Mumford]
     Full Idea: Pure regularities are not nearly as common as might have been thought, and are usually only to be found in simplified or idealized conditions.
     From: Stephen Mumford (Laws in Nature [2004], 05.3)
     A reaction: [He cites Nancy Cartwright 1999 for this view]
Regularity laws don't explain, because they have no governing role [Mumford]
     Full Idea: A regularity-law does not explain its instances, because such laws play no role in determining or governing their instances.
     From: Stephen Mumford (Laws in Nature [2004], 09.7)
     A reaction: Good. It has always seemed to me entirely vacuous to explain an event simply by saying that it falls under some law.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
If the best system describes a nomological system, the laws are in nature, not in the description [Mumford]
     Full Idea: If the world really does have its own nomological structure, that a systematization merely describes, why are the laws not to be equated with the nomological structure itself, rather than with the system that describes it?
     From: Stephen Mumford (Laws in Nature [2004], 03.4)
The best systems theory says regularities derive from laws, rather than constituting them [Mumford]
     Full Idea: The best systems theory (of Mill-Ramsey-Lewis) says that laws are not seen as regularities but, rather, as those things from which regularities - or rather, the whole world history including the regularities and everything else - can be derived.
     From: Stephen Mumford (Laws in Nature [2004], 03.4)
     A reaction: Put this way, the theory invites questions about ontology. Regularities are just patterns in physical reality, but axioms are propositions. So are they just features of human thought, or do these axioms actuallyr reside in reality. Too weak or too strong.
26. Natural Theory / D. Laws of Nature / 5. Laws from Universals
If laws can be uninstantiated, this favours the view of them as connecting universals [Mumford]
     Full Idea: If there are laws that are instantiated in no particulars, then this would seem to favour the theory that laws connect universals rather than particulars.
     From: Stephen Mumford (Laws in Nature [2004], 06.4)
     A reaction: There is a dispute here between the Platonic view of uninstantiated universals (Tooley) and the Aristotelian instantiated view (Armstrong). Mumford and I prefer the dispositional account.
Laws of nature are necessary relations between universal properties, rather than about particulars [Mumford]
     Full Idea: The core of the Dretske-Tooley-Armstrong view of the late 70s is that we have a law of nature when we have a relation of natural necessitation between universals. ..The innovation was that laws are about properties, and only indirectly about particulars.
     From: Stephen Mumford (Laws in Nature [2004], 06.2)
     A reaction: It sounds as if we should then be able to know the laws of nature a priori, since that was Russell's 1912 definition of a priori knowledge.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
Laws of nature are just the possession of essential properties by natural kinds [Mumford]
     Full Idea: If dispositional essentialism is granted, then there is a law of nature wherever there is an essential property of a natural kind; laws are just the havings of essential properties by natural kinds.
     From: Stephen Mumford (Laws in Nature [2004], 07.2)
     A reaction: [He is expounding Ellis's view]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
To distinguish accidental from essential properties, we must include possible members of kinds [Mumford]
     Full Idea: Where properties are possessed by all kind members, we must distinguish the accidental from essential ones by considering all actual and possible kind members.
     From: Stephen Mumford (Laws in Nature [2004], 07.5)
     A reaction: This is why we must treat possibilities as features of the actual world.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
The Central Dilemma is how to explain an internal or external view of laws which govern [Mumford]
     Full Idea: The Central Dilemma about laws of nature is that, if they have some governing role, then they must be internal or external to the things governed, and it is hard to give a plausible account of either view.
     From: Stephen Mumford (Laws in Nature [2004], 09.2)
     A reaction: This dilemma is the basis of Mumford's total rejection of 'laws of nature'. I think I agree.
You only need laws if you (erroneously) think the world is otherwise inert [Mumford]
     Full Idea: Laws are a solution to a problem that was misconceived. Only if you think that the world would be otherwise inactive or inanimate, do you have the need to add laws to your ontology.
     From: Stephen Mumford (Laws in Nature [2004], 01.5)
     A reaction: This is a bold and extreme view - and I agree with it. I consider laws to be quite a useful concept when discussing nature, but they are not part of the ontology, and they don't do any work. They are metaphysically hopeless.
There are no laws of nature in Aristotle; they became standard with Descartes and Newton [Mumford]
     Full Idea: Laws do not appear in Aristotle's metaphysics, and it wasn't until Descartes and Newton that laws entered the intellectual mainstream.
     From: Stephen Mumford (Laws in Nature [2004], 01.5)
     A reaction: Cf. Idea 5470.