Combining Texts

All the ideas for 'Natural Kinds', 'The Secret Connexion' and 'The Structure of Empirical Knowledge'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophy is continuous with science, and has no external vantage point [Quine]
     Full Idea: I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boat. …There is no external vantage point, no first philosophy.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: Philosophy is generalisation. Science holds the upper hand, because it settles the subject-matter to be generalised.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Klein summarised geometry as grouped together by transformations [Quine]
     Full Idea: Felix Klein's so-called 'Erlangerprogramm' in geometry involved characterizing the various branches of geometry by what transformations were irrelevant to each.
     From: Willard Quine (Natural Kinds [1969], p.137)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass terms just concern spread, but other terms involve both spread and individuation [Quine]
     Full Idea: 'Yellow' and 'water' are mass terms, concerned only with spread; 'apple' and 'square' are terms of divided reference, concerned with both spread and individuation.
     From: Willard Quine (Natural Kinds [1969], p.124)
     A reaction: Would you like some apple? Pass me that water. It is helpful to see that it is a requirement of 'individuation' that is missing from terms for stuff.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Once we know the mechanism of a disposition, we can eliminate 'similarity' [Quine]
     Full Idea: Once we can legitimize a disposition term by defining the relevant similarity standard, we are apt to know the mechanism of the disposition, and so by-pass the similarity.
     From: Willard Quine (Natural Kinds [1969], p.135)
     A reaction: I love mechanisms, but can we characterise mechanisms without mentioning powers and dispositions? Quine's dream is to eliminate 'similarity'.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
We judge things to be soluble if they are the same kind as, or similar to, things that do dissolve [Quine]
     Full Idea: Intuitively, what qualifies a thing as soluble though it never gets into water is that it is of the same kind as the things that actually did or will dissolve; it is similar to them.
     From: Willard Quine (Natural Kinds [1969], p.130)
     A reaction: If you can judge that the similar things 'will' dissolve, you can cut to the chase and judge that this thing will dissolve.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
A coherence theory of justification can combine with a correspondence theory of truth [Bonjour]
     Full Idea: There is no manifest absurdity in combining a coherence theory of justification with a correspondence theory of truth.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.1)
     A reaction: His point is to sharply (and correctly) distinguish coherent justification from a coherence theory of truth. Personally I would recommend talking of a 'robust' theory of truth, without tricky commitment to 'correspondence' between very dissimilar things.
There will always be a vast number of equally coherent but rival systems [Bonjour]
     Full Idea: On any plausible conception of coherence, there will always be many, probably infinitely many, different and incompatible systems of belief which are equally coherent.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: If 'infinitely many' theories are allowed, that blocks the coherentist hope that widening and precisifying the system will narrow down the options and offer some verisimilitude. If we stick to current English expression, that should keep them finite.
Empirical coherence must attribute reliability to spontaneous experience [Bonjour]
     Full Idea: An empirical coherence theory needs, for the beliefs of a cognitive system to be even candidates for empirical justification, that the system must contain laws attributing a high degree of reliability to a variety of spontaneous cognitive beliefs.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 7.1)
     A reaction: Wanting such a 'law' seems optimistic, and not in the spirit of true coherentism, which can individually evaluate each experiential belief. I'm not sure Bonjour's Observation Requirement is needed, since it is incoherent to neglect observations.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / b. Pro-coherentism
A well written novel cannot possibly match a real belief system for coherence [Bonjour]
     Full Idea: It is not even minimally plausible that a well written novel ...would have the degree of coherence required to be a serious alternative to anyone's actual system of beliefs.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: This seems correct. 'Bleak House' is wonderfully consistent, but its elements are entirely verbal, and nothing occupies the space between the facts that are described. And Lady Dedlock is not in Debrett. I think this kills a standard objection.
The objection that a negated system is equally coherent assume that coherence is consistency [Bonjour]
     Full Idea: Sometimes it is said that if one has an appropriately coherent system, an alternative system can be produced simply be negating all of the components of the first system. This would only be so if coherence amounted simply to consistency.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: I associate Russell with this original objection to coherentism. I formerly took this to be a serious problem, and am now relieved to see that it clearly isn't.
A coherent system can be justified with initial beliefs lacking all credibility [Bonjour]
     Full Idea: It is simply not necessary in order for [the coherence] view to yield justification to suppose that cognitively spontaneous beliefs have some degree of initial or independent credibility.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 7.2)
     A reaction: This is thoroughly and rather persuasively criticised by Erik Olson. But he always focuses on the coherence of a 'system' with multiple beliefs. I take the credibility of each individual belief to need coherent assessment against a full background.
The best explanation of coherent observations is they are caused by and correspond to reality [Bonjour]
     Full Idea: The best explanation for a stable system of beliefs which rely on observation is that the beliefs are caused by what they depict, and the system roughly corresponds to the independent reality it describes.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 8.3)
     A reaction: [compressed] Anyone who links best explanation to coherence (and to induction) warms the cockles of my heart. Erik Olson offers a critique, but doesn't convince me. The alternative is to find a better explanation (than reality), or give up.
14. Science / A. Basis of Science / 3. Experiment
Science is common sense, with a sophisticated method [Quine]
     Full Idea: Sciences differ from common sense only in the degree of methodological sophistication.
     From: Willard Quine (Natural Kinds [1969], p.129)
     A reaction: Science is normal thinking about the world, but it is teamwork, with the bar set very high.
14. Science / A. Basis of Science / 5. Anomalies
Anomalies challenge the claim that the basic explanations are actually basic [Bonjour]
     Full Idea: The distinctive significance of anomalies lies in the fact that they undermine the claim of the allegedly basic explanatory principles to be genuinely basic.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.3)
     A reaction: This seems plausible, suggesting that (rather than an anomaly flatly 'falsifying' a theory) an anomaly may just demand a restructuring or reconceptualising of the theory.
14. Science / C. Induction / 1. Induction
Induction relies on similar effects following from each cause [Quine]
     Full Idea: Induction expresses our hopes that similar causes will have similar effects.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: Some top philosophers are also top teachers, and Quine was one of them, in his writings. He boils it down for the layman. Once again, he is pointing to the fundamental role of the similarity relation.
Induction is just more of the same: animal expectations [Quine]
     Full Idea: Induction is essentially only more of the same: animal expectation or habit formation.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: My working definition of induction is 'learning from experience', but that doesn't disagree with Quine. Lipton has a richer account of different types of induction. Quine's point is that it rests on resemblance.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Grue is a puzzle because the notions of similarity and kind are dubious in science [Quine]
     Full Idea: What makes Goodman's example a puzzle is the dubious scientific standing of a general notion of similarity, or of kind.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Illuminating. It might be best expressed as revealing a problem with sortal terms, as employed by Geach, or by Wiggins. Grue is a bit silly, but sortals are subject to convention and culture. 'Natural' properties seem needed.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
General terms depend on similarities among things [Quine]
     Full Idea: The usual general term, whether a common noun or a verb or an adjective, owes its generality to some resemblance among the things referred to.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Quine has a nice analysis of the basic role of similarity in a huge amount of supposedly strict scientific thought.
To learn yellow by observation, must we be told to look at the colour? [Quine]
     Full Idea: According to the 'respects' view, our learning of yellow by ostension would have depended on our first having been told or somehow apprised that it was going to be a question of color.
     From: Willard Quine (Natural Kinds [1969], p.122)
     A reaction: Quine suggests there is just one notion of similarity, and respects can be 'abstracted' afterwards. Even the ontologically ruthless Quine admits psychological abstraction!
Standards of similarity are innate, and the spacing of qualities such as colours can be mapped [Quine]
     Full Idea: A standard of similarity is in some sense innate. The spacing of qualities (such as red, pink and blue) can be explored and mapped in the laboratory by experiments. They are needed for all learning.
     From: Willard Quine (Natural Kinds [1969], p.123)
     A reaction: This reasserts Hume's original point in more scientific terms. It is one of the undeniable facts about our perceptions of qualities and properties, no matter how platonist your view of universals may be.
Similarity is just interchangeability in the cosmic machine [Quine]
     Full Idea: Things are similar to the extent that they are interchangeable parts of the cosmic machine.
     From: Willard Quine (Natural Kinds [1969], p.134)
     A reaction: This is a major idea for Quine, because it is a means to gradually eliminate the fuzzy ideas of 'resemblance' or 'similarity' or 'natural kind' from science. I love it! Two tigers are same insofar as they are substitutable.
19. Language / C. Assigning Meanings / 3. Predicates
Projectible predicates can be universalised about the kind to which they refer [Quine]
     Full Idea: 'Projectible' predicates are predicates F and G whose shared instances all do count, for whatever reason, towards confirmation of 'All F are G'. ….A projectible predicate is one that is true of all and only the things of a kind.
     From: Willard Quine (Natural Kinds [1969], p.115-6)
     A reaction: Both Quine and Goodman are infuriatingly brief about the introduction of this concept. 'Red' is true of all ripe tomatoes, but not 'only' of them. Hardly any predicates are true only of one kind. Is that a scholastic 'proprium'?
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Quine probably regrets natural kinds now being treated as essences [Quine, by Dennett]
     Full Idea: The concept of natural kinds was reintroduced by Quine, who may now regret the way it has become a stand-in for the dubious but covertly popular concept of essences.
     From: report of Willard Quine (Natural Kinds [1969]) by Daniel C. Dennett - Consciousness Explained 12.2 n2
     A reaction: He is right that Quine would regret it, and he is right that we can't assume that there are necessary essences just because there seem to be stable natural kinds, but personally I am an essentialist, so I'm not that bothered.
If similarity has no degrees, kinds cannot be contained within one another [Quine]
     Full Idea: If similarity has no degrees there is no containing of kinds within broader kinds. If colored things are a kind, they are similar, but red things are too narrow for a kind. If red things are a kind, colored things are not similar, and it's too broad.
     From: Willard Quine (Natural Kinds [1969], p.118)
     A reaction: [compressed] I'm on Quine's side with this. We glibly talk of 'kinds', but the criteria for sorting things into kinds seems to be a mess. Quine goes on to offer a better account than the (diadic, yes-no) one rejected here.
Comparative similarity allows the kind 'colored' to contain the kind 'red' [Quine]
     Full Idea: With the triadic relation of comparative similarity, kinds can contain one another, as well as overlapping. Red and colored things can both count as kinds. Colored things all resemble one another, even though less than red things do.
     From: Willard Quine (Natural Kinds [1969], p.119)
     A reaction: [compressed] Quine claims that comparative similarity is necessary for kinds - that there be some 'foil' in a similarity - that A is more like C than B is.
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
You can't base kinds just on resemblance, because chains of resemblance are a muddle [Quine]
     Full Idea: If kinds are based on similarity, this has the Imperfect Community problem. Red round, red wooden and round wooden things all resemble one another somehow. There may be nothing outside the set resembling them, so it meets the definition of kind.
     From: Willard Quine (Natural Kinds [1969], p.120)
     A reaction: [ref. to Goodman 'Structure' 2nd 163- , which attacks Carnap on this] This suggests an invocation of Wittgenstein's family resemblance, which won't be much help for natural kinds.
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
A phenomenalist about objects has to be a regularity theorist about causation [Strawson,G]
     Full Idea: If you are a phenomenalist about objects, then there is an important sense in which you ought to be a Regularity theorist about what causation is, in such objects.
     From: Galen Strawson (The Secret Connexion [1989], App C)
     A reaction: Strawson is denying that Hume is a phenomenalist. One might go a little further, and say that a phenomenalist should abandon the idea of causation (as Russell did).
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
It is hard to see how regularities could be explained [Quine]
     Full Idea: Why there have been regularities is an obscure question, for it is hard to see what would count as an answer.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: This is the standard pessimism of the 20th century Humeans, but it strikes me as comparable to the pessimism about science found in Locke and Hume. Regularities are explained all the time by scientists, though the lowest level may be hopeless.