Combining Texts

All the ideas for 'Reply to Professor Marcus', 'Grundgesetze der Arithmetik 1 (Basic Laws)' and 'Intro to Naming,Necessity and Natural Kinds'

unexpand these ideas     |    start again     |     specify just one area for these texts


14 ideas

2. Reason / D. Definition / 1. Definitions
The new view is that "water" is a name, and has no definition [Schwartz,SP]
     Full Idea: Perhaps the modern view is best expressed as saying that "water" has no definition at all, at least in the traditional sense, and is a proper name of a specific substance.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: This assumes that proper names have no definitions, though I am not clear how we can grasp the name 'Aristotle' without some association of properties (human, for example) to go with it. We need a definition of 'definition'.
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
We refer to Thales successfully by name, even if all descriptions of him are false [Schwartz,SP]
     Full Idea: We can refer to Thales by using the name "Thales" even though perhaps the only description we can supply is false of him.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: It is not clear what we would be referring to if all of our descriptions (even 'Greek philosopher') were false. If an archaeologist finds just a scrap of stone with a name written on it, that is hardly a sufficient basis for successful reference.
The traditional theory of names says some of the descriptions must be correct [Schwartz,SP]
     Full Idea: The traditional theory of proper names entails that at least some combination of the things ordinarily believed of Aristotle are necessarily true of him.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: Searle endorses this traditional theory. Kripke and co. tried to dismiss it, but you can't. If all descriptions of Aristotle turned out to be false (it was actually the name of a Persian statue), our modern references would have been unsuccessful.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Frege considered definite descriptions to be genuine singular terms [Frege, by Fitting/Mendelsohn]
     Full Idea: Frege (1893) considered a definite description to be a genuine singular term (as we do), so that a sentence like 'The present King of France is bald' would have the same logical form as 'Harry Truman is bald'.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by M Fitting/R Mendelsohn - First-Order Modal Logic
     A reaction: The difficulty is what the term refers to, and they embrace a degree of Meinongianism - that is that non-existent objects can still have properties attributed to them, and so can be allowed some sort of 'existence'.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Contradiction arises from Frege's substitutional account of second-order quantification [Dummett on Frege]
     Full Idea: The contradiction in Frege's system is due to the presence of second-order quantification, ..and Frege's explanation of the second-order quantifier, unlike that which he provides for the first-order one, appears to be substitutional rather than objectual.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], §25) by Michael Dummett - Frege philosophy of mathematics Ch.17
     A reaction: In Idea 9871 Dummett adds the further point that Frege lacks a clear notion of the domain of quantification. At this stage I don't fully understand this idea, but it is clearly of significance, so I will return to it.
Either reference really matters, or we don't need to replace it with substitutions [Quine]
     Full Idea: When we reconstrue quantification in terms of substituted expressions rather than real values, we waive reference. ...but if reference matters, we cannot afford to waive it as a category; and if it does not, we do not need to.
     From: Willard Quine (Reply to Professor Marcus [1962], p.183)
     A reaction: An odd dilemma to pose. Presumably the substitution account is an attempt to explain how language actually works, without mentioning dubious direct ontological commitment in the quantifiers.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are ratios of quantities, such as lengths or masses [Frege]
     Full Idea: If 'number' is the referent of a numerical symbol, a real number is the same as a ratio of quantities. ...A length can have to another length the same ratio as a mass to another mass.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], III.1.73), quoted by Michael Dummett - Frege philosophy of mathematics 21 'Frege's'
     A reaction: This is part of a critique of Cantor and the Cauchy series approach. Interesting that Frege, who is in the platonist camp, is keen to connect the real numbers with natural phenomena. He is always keen to keep touch with the application of mathematics.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
We can't prove everything, but we can spell out the unproved, so that foundations are clear [Frege]
     Full Idea: It cannot be demanded that everything be proved, because that is impossible; but we can require that all propositions used without proof be expressly declared as such, so that we can see distinctly what the whole structure rests upon.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.2), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 7 'What'
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Frege defined number in terms of extensions of concepts, but needed Basic Law V to explain extensions [Frege, by Hale/Wright]
     Full Idea: Frege opts for his famous definition of numbers in terms of extensions of the concept 'equal to the concept F', but he then (in 'Grundgesetze') needs a theory of extensions or classes, which he provided by means of Basic Law V.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by B Hale / C Wright - Intro to 'The Reason's Proper Study' §1
Frege ignored Cantor's warning that a cardinal set is not just a concept-extension [Tait on Frege]
     Full Idea: Cantor pointed out explicitly to Frege that it is a mistake to take the notion of a set (i.e. of that which has a cardinal number) to simply mean the extension of a concept. ...Frege's later assumption of this was an act of recklessness.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by William W. Tait - Frege versus Cantor and Dedekind III
     A reaction: ['recklessness' is on p.61] Tait has no sympathy with the image of Frege as an intellectual martyr. Frege had insufficient respect for a great genius. Cantor, crucially, understood infinity much better than Frege.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
My Basic Law V is a law of pure logic [Frege]
     Full Idea: I hold that my Basic Law V is a law of pure logic.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.4), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: This is, of course, the notorious law which fell foul of Russell's Paradox. It is said to be pure logic, even though it refers to things that are F and things that are G.
18. Thought / C. Content / 8. Intension
The intension of "lemon" is the conjunction of properties associated with it [Schwartz,SP]
     Full Idea: The conjunction of properties associated with a term such as "lemon" is often called the intension of the term "lemon".
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §II)
     A reaction: The extension of "lemon" is the set of all lemons. At last, a clear explanation of the word 'intension'! The debate becomes clear - over whether the terms of a language are used in reference to ideas of properties (and substances?), or to external items.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
A concept is a function mapping objects onto truth-values, if they fall under the concept [Frege, by Dummett]
     Full Idea: In later Frege, a concept could be taken as a particular case of a function, mapping every object on to one of the truth-values (T or F), according as to whether, as we should ordinarily say, that object fell under the concept or not.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Michael Dummett - The Philosophy of Mathematics 3.5
     A reaction: As so often in these attempts at explanation, this sounds circular. You can't decide whether an object truly falls under a concept, if you haven't already got the concept. His troubles all arise (I say) because he scorns abstractionist accounts.
Frege took the study of concepts to be part of logic [Frege, by Shapiro]
     Full Idea: Frege took the study of concepts and their extensions to be within logic.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Stewart Shapiro - Foundations without Foundationalism 7.1
     A reaction: This is part of the plan to make logic a universal language (see Idea 13664). I disagree with this, and with the general logicist view of the position of logic. The logical approach thins concepts out. See Deleuze/Guattari's horror at this.