Combining Texts

All the ideas for 'Natural Kinds', 'Internalism and Externalism: a History' and 'A Priori'

unexpand these ideas     |    start again     |     specify just one area for these texts


33 ideas

1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
After 1903, Husserl avoids metaphysical commitments [Mares]
     Full Idea: In Husserl's philosophy after 1903, he is unwilling to commit himself to any specific metaphysical views.
     From: Edwin D. Mares (A Priori [2011], 08.2)
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophy is continuous with science, and has no external vantage point [Quine]
     Full Idea: I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boat. …There is no external vantage point, no first philosophy.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: Philosophy is generalisation. Science holds the upper hand, because it settles the subject-matter to be generalised.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Klein summarised geometry as grouped together by transformations [Quine]
     Full Idea: Felix Klein's so-called 'Erlangerprogramm' in geometry involved characterizing the various branches of geometry by what transformations were irrelevant to each.
     From: Willard Quine (Natural Kinds [1969], p.137)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The truth of the axioms doesn't matter for pure mathematics, but it does for applied [Mares]
     Full Idea: The epistemological burden of showing that the axioms are true is removed if we are only studying pure mathematics. If, however, we want to look at applied mathematics, then this burden returns.
     From: Edwin D. Mares (A Priori [2011], 11.4)
     A reaction: One of those really simple ideas that hits the spot. Nice. The most advanced applied mathematics must rest on counting and measuring.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematics is relations between properties we abstract from experience [Mares]
     Full Idea: Aristotelians treat mathematical facts as relations between properties. These properties, moreover, are abstracted from our experience of things. ...This view finds a natural companion in structuralism.
     From: Edwin D. Mares (A Priori [2011], 11.7)
     A reaction: This is the view of mathematics that I personally favour. The view that we abstract 'five' from a group of five pebbles is too simplistic, but this is the right general approach.
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass terms just concern spread, but other terms involve both spread and individuation [Quine]
     Full Idea: 'Yellow' and 'water' are mass terms, concerned only with spread; 'apple' and 'square' are terms of divided reference, concerned with both spread and individuation.
     From: Willard Quine (Natural Kinds [1969], p.124)
     A reaction: Would you like some apple? Pass me that water. It is helpful to see that it is a requirement of 'individuation' that is missing from terms for stuff.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Once we know the mechanism of a disposition, we can eliminate 'similarity' [Quine]
     Full Idea: Once we can legitimize a disposition term by defining the relevant similarity standard, we are apt to know the mechanism of the disposition, and so by-pass the similarity.
     From: Willard Quine (Natural Kinds [1969], p.135)
     A reaction: I love mechanisms, but can we characterise mechanisms without mentioning powers and dispositions? Quine's dream is to eliminate 'similarity'.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
We judge things to be soluble if they are the same kind as, or similar to, things that do dissolve [Quine]
     Full Idea: Intuitively, what qualifies a thing as soluble though it never gets into water is that it is of the same kind as the things that actually did or will dissolve; it is similar to them.
     From: Willard Quine (Natural Kinds [1969], p.130)
     A reaction: If you can judge that the similar things 'will' dissolve, you can cut to the chase and judge that this thing will dissolve.
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Light in straight lines is contingent a priori; stipulated as straight, because they happen to be so [Mares]
     Full Idea: It seems natural to claim that light rays moving in straight lines is contingent but a priori. Scientists stipulate that they are the standard by which we measure straightness, but their appropriateness for this task is a contingent feature of the world.
     From: Edwin D. Mares (A Priori [2011], 02.9)
     A reaction: This resembles the metre rule in Paris. It is contingent that something is a certain way, so we make being that way a conventional truth, which can therefore be known via the convention, rather than via the contingent fact.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Aristotelians dislike the idea of a priori judgements from pure reason [Mares]
     Full Idea: Aristotelians tend to eschew talk about a special faculty of pure reason that is responsible for all of our a priori judgements.
     From: Edwin D. Mares (A Priori [2011], 08.9)
     A reaction: He is invoking Carrie Jenkins's idea that the a priori is knowledge of relations between concepts which have been derived from experience. Nice idea. We thus have an empirical a priori, integrated into the natural world. Abstraction must be involved.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Empiricists say rationalists mistake imaginative powers for modal insights [Mares]
     Full Idea: Empiricist critiques of rationalism often accuse rationalists of confusing the limits of their imaginations with real insight into what is necessarily true.
     From: Edwin D. Mares (A Priori [2011], 03.01)
     A reaction: See ideas on 'Conceivable as possible' for more on this. You shouldn't just claim to 'see' that something is true, but be willing to offer some sort of reason, truthmaker or grounding. Without that, you may be right, but you are on weak ground.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
The most popular view is that coherent beliefs explain one another [Mares]
     Full Idea: In what is perhaps the most popular version of coherentism, a system of beliefs is a set of beliefs that explain one another.
     From: Edwin D. Mares (A Priori [2011], 01.5)
     A reaction: These seems too simple. My first response would be that explanations are what result from coherence sets of beliefs. I may have beliefs that explain nothing, but at least have the virtue of being coherent.
13. Knowledge Criteria / C. External Justification / 1. External Justification
Externalist accounts of knowledge do not require the traditional sort of justification [Kornblith]
     Full Idea: What is distinctive about externalist accounts of knowledge is that they do not require justification, at least in the traditional sense.
     From: Hilary Kornblith (Internalism and Externalism: a History [2001], p.2)
     A reaction: At least this gives animals the chance to know things, but I suspect that they never get beyond true beliefs. I'm sure humans have 'better' knowledge than animals.
14. Science / A. Basis of Science / 3. Experiment
Science is common sense, with a sophisticated method [Quine]
     Full Idea: Sciences differ from common sense only in the degree of methodological sophistication.
     From: Willard Quine (Natural Kinds [1969], p.129)
     A reaction: Science is normal thinking about the world, but it is teamwork, with the bar set very high.
14. Science / B. Scientific Theories / 3. Instrumentalism
Operationalism defines concepts by our ways of measuring them [Mares]
     Full Idea: The central claim of Percy Bridgman's theory of operational definitions (1920s), is that definitions of certain scientific concepts are given by the ways that we have to measure them. For example, a straight line is 'the path of a light ray'.
     From: Edwin D. Mares (A Priori [2011], 02.9)
     A reaction: It is often observed that this captures the spirit of Special Relativity.
14. Science / C. Induction / 1. Induction
Induction is just more of the same: animal expectations [Quine]
     Full Idea: Induction is essentially only more of the same: animal expectation or habit formation.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: My working definition of induction is 'learning from experience', but that doesn't disagree with Quine. Lipton has a richer account of different types of induction. Quine's point is that it rests on resemblance.
Induction relies on similar effects following from each cause [Quine]
     Full Idea: Induction expresses our hopes that similar causes will have similar effects.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: Some top philosophers are also top teachers, and Quine was one of them, in his writings. He boils it down for the layman. Once again, he is pointing to the fundamental role of the similarity relation.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Grue is a puzzle because the notions of similarity and kind are dubious in science [Quine]
     Full Idea: What makes Goodman's example a puzzle is the dubious scientific standing of a general notion of similarity, or of kind.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Illuminating. It might be best expressed as revealing a problem with sortal terms, as employed by Geach, or by Wiggins. Grue is a bit silly, but sortals are subject to convention and culture. 'Natural' properties seem needed.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
General terms depend on similarities among things [Quine]
     Full Idea: The usual general term, whether a common noun or a verb or an adjective, owes its generality to some resemblance among the things referred to.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Quine has a nice analysis of the basic role of similarity in a huge amount of supposedly strict scientific thought.
To learn yellow by observation, must we be told to look at the colour? [Quine]
     Full Idea: According to the 'respects' view, our learning of yellow by ostension would have depended on our first having been told or somehow apprised that it was going to be a question of color.
     From: Willard Quine (Natural Kinds [1969], p.122)
     A reaction: Quine suggests there is just one notion of similarity, and respects can be 'abstracted' afterwards. Even the ontologically ruthless Quine admits psychological abstraction!
Standards of similarity are innate, and the spacing of qualities such as colours can be mapped [Quine]
     Full Idea: A standard of similarity is in some sense innate. The spacing of qualities (such as red, pink and blue) can be explored and mapped in the laboratory by experiments. They are needed for all learning.
     From: Willard Quine (Natural Kinds [1969], p.123)
     A reaction: This reasserts Hume's original point in more scientific terms. It is one of the undeniable facts about our perceptions of qualities and properties, no matter how platonist your view of universals may be.
Similarity is just interchangeability in the cosmic machine [Quine]
     Full Idea: Things are similar to the extent that they are interchangeable parts of the cosmic machine.
     From: Willard Quine (Natural Kinds [1969], p.134)
     A reaction: This is a major idea for Quine, because it is a means to gradually eliminate the fuzzy ideas of 'resemblance' or 'similarity' or 'natural kind' from science. I love it! Two tigers are same insofar as they are substitutable.
18. Thought / D. Concepts / 2. Origin of Concepts / b. Empirical concepts
Aristotelian justification uses concepts abstracted from experience [Mares]
     Full Idea: Aristotelian justification is the process of reasoning using concepts that are abstracted from experience (rather than, say, concepts that are innate or those that we associate with the meanings of words).
     From: Edwin D. Mares (A Priori [2011], 08.1)
     A reaction: See Carrie Jenkins for a full theory along these lines (though she doesn't mention Aristotle). This is definitely my preferred view of concepts.
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The essence of a concept is either its definition or its conceptual relations? [Mares]
     Full Idea: In the 'classical theory' a concept includes in it those concepts that define it. ...In the 'theory theory' view the content of a concept is determined by its relationship to other concepts.
     From: Edwin D. Mares (A Priori [2011], 03.10)
     A reaction: Neither of these seem to give an intrinsic account of a concept, or any account of how the whole business gets off the ground.
19. Language / C. Assigning Meanings / 3. Predicates
Projectible predicates can be universalised about the kind to which they refer [Quine]
     Full Idea: 'Projectible' predicates are predicates F and G whose shared instances all do count, for whatever reason, towards confirmation of 'All F are G'. ….A projectible predicate is one that is true of all and only the things of a kind.
     From: Willard Quine (Natural Kinds [1969], p.115-6)
     A reaction: Both Quine and Goodman are infuriatingly brief about the introduction of this concept. 'Red' is true of all ripe tomatoes, but not 'only' of them. Hardly any predicates are true only of one kind. Is that a scholastic 'proprium'?
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics has a nice compositional account of modal statements [Mares]
     Full Idea: Possible worlds semantics is appealing because it gives a compositional analysis of the truth conditions of statements about necessity and possibility.
     From: Edwin D. Mares (A Priori [2011], 02.2)
     A reaction: Not sure I get this. Is the meaning composed by the gradual addition of worlds? If not, how is meaning composed in the normal way, from component words and phrases?
19. Language / D. Propositions / 3. Concrete Propositions
Unstructured propositions are sets of possible worlds; structured ones have components [Mares]
     Full Idea: An unstructured proposition is a set of possible worlds. ....Structured propositions contain entities that correspond to various parts of the sentences or thoughts that express them.
     From: Edwin D. Mares (A Priori [2011], 02.3)
     A reaction: I am definitely in favour of structured propositions. It strikes me as so obvious as to be not worth discussion - so I am obviously missing something here. Mares says structured propositions are 'more convenient'.
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Quine probably regrets natural kinds now being treated as essences [Quine, by Dennett]
     Full Idea: The concept of natural kinds was reintroduced by Quine, who may now regret the way it has become a stand-in for the dubious but covertly popular concept of essences.
     From: report of Willard Quine (Natural Kinds [1969]) by Daniel C. Dennett - Consciousness Explained 12.2 n2
     A reaction: He is right that Quine would regret it, and he is right that we can't assume that there are necessary essences just because there seem to be stable natural kinds, but personally I am an essentialist, so I'm not that bothered.
If similarity has no degrees, kinds cannot be contained within one another [Quine]
     Full Idea: If similarity has no degrees there is no containing of kinds within broader kinds. If colored things are a kind, they are similar, but red things are too narrow for a kind. If red things are a kind, colored things are not similar, and it's too broad.
     From: Willard Quine (Natural Kinds [1969], p.118)
     A reaction: [compressed] I'm on Quine's side with this. We glibly talk of 'kinds', but the criteria for sorting things into kinds seems to be a mess. Quine goes on to offer a better account than the (diadic, yes-no) one rejected here.
Comparative similarity allows the kind 'colored' to contain the kind 'red' [Quine]
     Full Idea: With the triadic relation of comparative similarity, kinds can contain one another, as well as overlapping. Red and colored things can both count as kinds. Colored things all resemble one another, even though less than red things do.
     From: Willard Quine (Natural Kinds [1969], p.119)
     A reaction: [compressed] Quine claims that comparative similarity is necessary for kinds - that there be some 'foil' in a similarity - that A is more like C than B is.
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
You can't base kinds just on resemblance, because chains of resemblance are a muddle [Quine]
     Full Idea: If kinds are based on similarity, this has the Imperfect Community problem. Red round, red wooden and round wooden things all resemble one another somehow. There may be nothing outside the set resembling them, so it meets the definition of kind.
     From: Willard Quine (Natural Kinds [1969], p.120)
     A reaction: [ref. to Goodman 'Structure' 2nd 163- , which attacks Carnap on this] This suggests an invocation of Wittgenstein's family resemblance, which won't be much help for natural kinds.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
It is hard to see how regularities could be explained [Quine]
     Full Idea: Why there have been regularities is an obscure question, for it is hard to see what would count as an answer.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: This is the standard pessimism of the 20th century Humeans, but it strikes me as comparable to the pessimism about science found in Locke and Hume. Regularities are explained all the time by scientists, though the lowest level may be hopeless.
27. Natural Reality / C. Space / 3. Points in Space
Maybe space has points, but processes always need regions with a size [Mares]
     Full Idea: One theory is that space is made up of dimensionless points, but physical processes cannot take place in regions of less than a certain size.
     From: Edwin D. Mares (A Priori [2011], 06.7)
     A reaction: Thinkers in sympathy with verificationism presumably won't like this, and may prefer Feynman's view.