Combining Texts

All the ideas for 'The Roots of Reference', 'Set Theory' and 'Db (ideas)'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Note that "is" can assert existence, or predication, or identity, or classification [PG]
     Full Idea: There are four uses of the word "is" in English: as existence ('he is at home'), as predication ('he is tall'), as identity ('he is the man I saw'), and as classification ('he is British').
     From: PG (Db (ideas) [2031])
     A reaction: This seems a nice instance of the sort of point made by analytical philosophy, which can lead to horrible confusion in other breeds of philosophy when it is overlooked.
2. Reason / F. Fallacies / 1. Fallacy
Fallacies are errors in reasoning, 'formal' if a clear rule is breached, and 'informal' if more general [PG]
     Full Idea: Fallacies are errors in reasoning, labelled as 'formal' if a clear rule has been breached, and 'informal' if some less precise error has been made.
     From: PG (Db (ideas) [2031])
     A reaction: Presumably there can be a grey area between the two.
2. Reason / F. Fallacies / 3. Question Begging
Question-begging assumes the proposition which is being challenged [PG]
     Full Idea: To beg the question is to take for granted in your argument that very proposition which is being challenged
     From: PG (Db (ideas) [2031])
     A reaction: An undoubted fallacy, and a simple failure to engage in the rational enterprise. I suppose one might give a reason for something, under the mistaken apprehension that it didn't beg the question; analysis of logical form is then needed.
2. Reason / F. Fallacies / 6. Fallacy of Division
What is true of a set is also true of its members [PG]
     Full Idea: The fallacy of division is the claim that what is true of a set must therefore be true of its members.
     From: PG (Db (ideas) [2031])
     A reaction: Clearly a fallacy, but if you only accept sets which are rational, then there is always a reason why a particular is a member of a set, and you can infer facts about particulars from the nature of the set
2. Reason / F. Fallacies / 7. Ad Hominem
The Ad Hominem Fallacy criticises the speaker rather than the argument [PG]
     Full Idea: The Ad Hominem Fallacy is to criticise the person proposing an argument rather than the argument itself, as when you say "You would say that", or "Your behaviour contradicts what you just said".
     From: PG (Db (ideas) [2031])
     A reaction: Nietzsche is very keen on ad hominem arguments, and cheerfully insults great philosophers, but then he doesn't believe there is such a thing as 'pure argument', and he is a relativist.
3. Truth / H. Deflationary Truth / 3. Minimalist Truth
Minimal theories of truth avoid ontological commitment to such things as 'facts' or 'reality' [PG]
     Full Idea: Minimalist theories of truth are those which involve minimum ontological commitment, avoiding references to 'reality' or 'facts' or 'what works', preferring to refer to formal relationships within language.
     From: PG (Db (ideas) [2031])
     A reaction: Personally I am suspicious of minimal theories, which seem to be designed by and for anti-realists. They seem too focused on language, when animals can obviously formulate correct propositions. I'm quite happy with the 'facts', even if that is vague.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
5. Theory of Logic / L. Paradox / 1. Paradox
Monty Hall Dilemma: do you abandon your preference after Monty eliminates one of the rivals? [PG]
     Full Idea: The Monty Hall Dilemma: Three boxes, one with a big prize; pick one to open. Monty Hall then opens one of the other two, which is empty. You may, if you wish, switch from your box to the other unopened box. Should you?
     From: PG (Db (ideas) [2031])
     A reaction: The other two boxes, as a pair, are more likely contain the prize than your box. Monty Hall has eliminated one of them for you, so you should choose the other one. Your intuition that the two remaining boxes are equal is incorrect!
8. Modes of Existence / C. Powers and Dispositions / 3. Powers as Derived
Dispositions are physical states of mechanism; when known, these replace the old disposition term [Quine]
     Full Idea: Each disposition, in my view, is a physical state or mechanism. ...In some cases nowadays we understand the physical details and set them forth explicitly in terms of the arrangement and interaction of small bodies. This replaces the old disposition.
     From: Willard Quine (The Roots of Reference [1990], p.11), quoted by Stephen Mumford - Dispositions 01.3
     A reaction: A challenge to the dispositions and powers view of nature, one which rests on the 'categorical' structural properties, rather than the 'hypothetical' dispositions. But can we define a mechanism without mentioning its powers?
10. Modality / B. Possibility / 6. Probability
Everything has a probability, something will happen, and probabilities add up [PG]
     Full Idea: The three Kolgorov axioms of probability: the probability of an event is a non-negative real number; it is certain that one of the 'elementary events' will occur; and the unity of probabilities is the sum of probability of parts ('additivity').
     From: PG (Db (ideas) [2031])
     A reaction: [My attempt to verbalise them; they are normally expressed in terms of set theory]. Got this from a talk handout, and Wikipedia.
11. Knowledge Aims / C. Knowing Reality / 1. Perceptual Realism / a. Naïve realism
If reality is just what we perceive, we would have no need for a sixth sense [PG]
     Full Idea: Reality must be more than merely what we perceive, because a sixth sense would enhance our current knowledge, and a seventh, and so on.
     From: PG (Db (ideas) [2031])
12. Knowledge Sources / A. A Priori Knowledge / 5. A Priori Synthetic
If my team is losing 3-1, I have synthetic a priori knowledge that they need two goals for a draw [PG]
     Full Idea: If my football team is losing 3-1, I seem to have synthetic a priori knowledge that they need two goals to achieve a draw
     From: PG (Db (ideas) [2031])
17. Mind and Body / E. Mind as Physical / 7. Anti-Physicalism / b. Multiple realisability
Maybe a mollusc's brain events for pain ARE of the same type (broadly) as a human's [PG]
     Full Idea: To defend type-type identity against the multiple realisability objection, we might say that a molluscs's brain events that register pain ARE of the same type as humans, given that being 'of the same type' is a fairly flexible concept.
     From: PG (Db (ideas) [2031])
     A reaction: But this reduces 'of the same type' to such vagueness that it may become vacuous. You would be left with token-token identity, where the mental event is just identical to some brain event, with its 'type' being irrelevant.
Maybe a frog's brain events for fear are functionally like ours, but not phenomenally [PG]
     Full Idea: To defend type-type identity against the multiple realisability objection, we might (also) say that while a frog's brain events for fear are functionally identical to a human's (it runs away), that doesn't mean they are phenomenally identical.
     From: PG (Db (ideas) [2031])
     A reaction: I take this to be the key reply to the multiple realisability problem. If a frog flees from a loud noise, it is 'frightened' in a functional sense, but that still leaves the question 'What's it like to be a frightened frog?', which may differ from humans.
23. Ethics / E. Utilitarianism / 4. Unfairness
Utilitarianism seems to justify the discreet murder of unhappy people [PG]
     Full Idea: If I discreetly murdered a gloomy and solitary tramp who was upsetting people in my village, if is hard to see how utilitarianism could demonstrate that I had done something wrong.
     From: PG (Db (ideas) [2031])
27. Natural Reality / G. Biology / 2. Life
Life is Movement, Respiration, Sensation, Nutrition, Excretion, Reproduction, Growth (MRS NERG) [PG]
     Full Idea: The biologists' acronym for the necessary conditions of life is MRS NERG: that is, Movement, Respiration, Sensation, Nutrition, Excretion, Reproduction, Growth.
     From: PG (Db (ideas) [2031])
     A reaction: How strictly necessary are each of these is a point for discussion. A notorious problem case is fire, which (at a stretch) may pass all seven tests.
28. God / A. Divine Nature / 4. Divine Contradictions
An omniscient being couldn't know it was omniscient, as that requires information from beyond its scope of knowledge [PG]
     Full Idea: God seems to be in the paradoxical situation that He may be omniscient, but can never know that He is, because that involves knowing that there is nothing outside his scope of knowledge (e.g. another God)
     From: PG (Db (ideas) [2031])
How could God know there wasn't an unknown force controlling his 'free' will? [PG]
     Full Idea: How could God be certain that he has free will (if He has), if He couldn't be sure that there wasn't an unknown force controlling his will?
     From: PG (Db (ideas) [2031])