Combining Texts

All the ideas for 'Natural Kinds', 'Introducing the Philosophy of Mathematics' and 'Formal and Material Consequence'

unexpand these ideas     |    start again     |     specify just one area for these texts


67 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophy is continuous with science, and has no external vantage point [Quine]
     Full Idea: I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boat. …There is no external vantage point, no first philosophy.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: Philosophy is generalisation. Science holds the upper hand, because it settles the subject-matter to be generalised.
2. Reason / D. Definition / 8. Impredicative Definition
An 'impredicative' definition seems circular, because it uses the term being defined [Friend]
     Full Idea: An 'impredicative' definition is one that uses the terms being defined in order to give the definition; in some way the definition is then circular.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], Glossary)
     A reaction: There has been a big controversy in the philosophy of mathematics over these. Shapiro gives the definition of 'village idiot' (which probably mentions 'village') as an example.
2. Reason / D. Definition / 10. Stipulative Definition
Classical definitions attempt to refer, but intuitionist/constructivist definitions actually create objects [Friend]
     Full Idea: In classical logic definitions are thought of as revealing our attempts to refer to objects, ...but for intuitionist or constructivist logics, if our definitions do not uniquely characterize an object, we are not entitled to discuss the object.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.4)
     A reaction: In defining a chess piece we are obviously creating. In defining a 'tree' we are trying to respond to fact, but the borderlines are vague. Philosophical life would be easier if we were allowed a mixture of creation and fact - so let's have that.
2. Reason / E. Argument / 5. Reductio ad Absurdum
Reductio ad absurdum proves an idea by showing that its denial produces contradiction [Friend]
     Full Idea: Reductio ad absurdum arguments are ones that start by denying what one wants to prove. We then prove a contradiction from this 'denied' idea and more reasonable ideas in one's theory, showing that we were wrong in denying what we wanted to prove.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is a mathematical definition, which rests on logical contradiction, but in ordinary life (and philosophy) it would be enough to show that denial led to absurdity, rather than actual contradiction.
3. Truth / A. Truth Problems / 8. Subjective Truth
Anti-realists see truth as our servant, and epistemically contrained [Friend]
     Full Idea: For the anti-realist, truth belongs to us, it is our servant, and as such, it must be 'epistemically constrained'.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: Put as clearly as this, it strikes me as being utterly and spectacularly wrong, a complete failure to grasp the elementary meaning of a concept etc. etc. If we aren't the servants of truth then we jolly we ought to be. Truth is above us.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
In classical/realist logic the connectives are defined by truth-tables [Friend]
     Full Idea: In the classical or realist view of logic the meaning of abstract symbols for logical connectives is given by the truth-tables for the symbol.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007])
     A reaction: Presumably this is realist because it connects them to 'truth', but only if that involves a fairly 'realist' view of truth. You could, of course, translate 'true' and 'false' in the table to empty (formalist) symbols such a 0 and 1. Logic is electronics.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Double negation elimination is not valid in intuitionist logic [Friend]
     Full Idea: In intuitionist logic, if we do not know that we do not know A, it does not follow that we know A, so the inference (and, in general, double negation elimination) is not intuitionistically valid.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: That inference had better not be valid in any logic! I am unaware of not knowing the birthday of someone I have never heard of. Propositional attitudes such as 'know' are notoriously difficult to explain in formal logic.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic was developed for fictional or non-existent objects [Friend]
     Full Idea: Free logic is especially designed to help regiment our reasoning about fictional objects, or nonexistent objects of some sort.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.7)
     A reaction: This makes it sound marginal, but I wonder whether existential commitment shouldn't be eliminated from all logic. Why do fictional objects need a different logic? What logic should we use for Robin Hood, if we aren't sure whether or not he is real?
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'proper subset' of A contains only members of A, but not all of them [Friend]
     Full Idea: A 'subset' of A is a set containing only members of A, and a 'proper subset' is one that does not contain all the members of A. Note that the empty set is a subset of every set, but it is not a member of every set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Is it the same empty set in each case? 'No pens' is a subset of 'pens', but is it a subset of 'paper'? Idea 8219 should be borne in mind when discussing such things, though I am not saying I agree with it.
A 'powerset' is all the subsets of a set [Friend]
     Full Idea: The 'powerset' of a set is a set made up of all the subsets of a set. For example, the powerset of {3,7,9} is {null, {3}, {7}, {9}, {3,7}, {3,9}, {7,9}, {3,7,9}}. Taking the powerset of an infinite set gets us from one infinite cardinality to the next.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Note that the null (empty) set occurs once, but not in the combinations. I begin to have queasy sympathies with the constructivist view of mathematics at this point, since no one has the time, space or energy to 'take' an infinite powerset.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Set theory makes a minimum ontological claim, that the empty set exists [Friend]
     Full Idea: As a realist choice of what is basic in mathematics, set theory is rather clever, because it only makes a very simple ontological claim: that, independent of us, there exists the empty set. The whole hierarchy of finite and infinite sets then follows.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Even so, for non-logicians the existence of the empty set is rather counterintuitive. "There was nobody on the road, so I overtook him". See Ideas 7035 and 8322. You might work back to the empty set, but how do you start from it?
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Infinite sets correspond one-to-one with a subset [Friend]
     Full Idea: Two sets are the same size if they can be placed in one-to-one correspondence. But even numbers have one-to-one correspondence with the natural numbers. So a set is infinite if it has one-one correspondence with a proper subset.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Dedekind's definition. We can match 1 with 2, 2 with 4, 3 with 6, 4 with 8, etc. Logicians seem happy to give as a definition anything which fixes the target uniquely, even if it doesn't give the essence. See Frege on 0 and 1, Ideas 8653/4.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend]
     Full Idea: Zermelo-Fraenkel and Gödel-Bernays set theory differ over the notions of ordinal construction and over the notion of class, among other things. Then there are optional axioms which can be attached, such as the axiom of choice and the axiom of infinity.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.6)
     A reaction: This summarises the reasons why we cannot just talk about 'set theory' as if it was a single concept. The philosophical interest I would take to be found in disentangling the ontological commitments of each version.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
If logic is topic-neutral that means it delves into all subjects, rather than having a pure subject matter [Read]
     Full Idea: The topic-neutrality of logic need not mean there is a pure subject matter for logic; rather, that the logician may need to go everywhere, into mathematics and even into metaphysics.
     From: Stephen Read (Formal and Material Consequence [1994], 'Logic')
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Not all arguments are valid because of form; validity is just true premises and false conclusion being impossible [Read]
     Full Idea: Belief that every valid argument is valid in virtue of form is a myth. ..Validity is a question of the impossibility of true premises and false conclusion for whatever reason, and some arguments are materially valid and the reason is not purely logical.
     From: Stephen Read (Formal and Material Consequence [1994], 'Logic')
     A reaction: An example of a non-logical reason is the transitive nature of 'taller than'. Conceptual connections are the usual example, as in 'it's red so it is coloured'. This seems to be a defence of the priority of semantic consequence in logic.
If the logic of 'taller of' rests just on meaning, then logic may be the study of merely formal consequence [Read]
     Full Idea: In 'A is taller than B, and B is taller than C, so A is taller than C' this can been seen as a matter of meaning - it is part of the meaning of 'taller' that it is transitive, but not of logic. Logic is now seen as the study of formal consequence.
     From: Stephen Read (Formal and Material Consequence [1994], 'Reduct')
     A reaction: I think I find this approach quite appealing. Obviously you can reason about taller-than relations, by putting the concepts together like jigsaw pieces, but I tend to think of logic as something which is necessarily implementable on a machine.
Maybe arguments are only valid when suppressed premises are all stated - but why? [Read]
     Full Idea: Maybe some arguments are really only valid when a suppressed premise is made explicit, as when we say that 'taller than' is a transitive concept. ...But what is added by making the hidden premise explicit? It cannot alter the soundness of the argument.
     From: Stephen Read (Formal and Material Consequence [1994], 'Suppress')
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
In modus ponens the 'if-then' premise contributes nothing if the conclusion follows anyway [Read]
     Full Idea: A puzzle about modus ponens is that the major premise is either false or unnecessary: A, If A then B / so B. If the major premise is true, then B follows from A, so the major premise is redundant. So it is false or not needed, and contributes nothing.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: Not sure which is the 'major premise' here, but it seems to be saying that the 'if A then B' is redundant. If I say 'it's raining so the grass is wet', it seems pointless to slip in the middle the remark that rain implies wet grass. Good point.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle is syntactic; it just says A or not-A, not whether they are true or false [Friend]
     Full Idea: The law of excluded middle is purely syntactic: it says for any well-formed formula A, either A or not-A. It is not a semantic law; it does not say that either A is true or A is false. The semantic version (true or false) is the law of bivalence.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: No wonder these two are confusing, sufficiently so for a lot of professional philosophers to blur the distinction. Presumably the 'or' is exclusive. So A-and-not-A is a contradiction; but how do you explain a contradiction without mentioning truth?
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Logical connectives contain no information, but just record combination relations between facts [Read]
     Full Idea: The logical connectives are useful for bundling information, that B follows from A, or that one of A or B is true. ..They import no information of their own, but serve to record combinations of other facts.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: Anyone who suggests a link between logic and 'facts' gets my vote, so this sounds a promising idea. However, logical truths have a high degree of generality, which seems somehow above the 'facts'.
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Intuitionists read the universal quantifier as "we have a procedure for checking every..." [Friend]
     Full Idea: In the intuitionist version of quantification, the universal quantifier (normally read as "all") is understood as "we have a procedure for checking every" or "we have checked every".
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.5)
     A reaction: It seems better to describe this as 'verificationist' (or, as Dummett prefers, 'justificationist'). Intuition suggests an ability to 'see' beyond the evidence. It strikes me as bizarre to say that you can't discuss things you can't check.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend]
     Full Idea: The realist meets the Burali-Forti paradox by saying that all the ordinals are a 'class', not a set. A proper class is what we discuss when we say "all" the so-and-sos when they cannot be reached by normal set-construction. Grammar is their only limit.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This strategy would be useful for Class Nominalism, which tries to define properties in terms of classes, but gets tangled in paradoxes. But why bother with strict sets if easy-going classes will do just as well? Descartes's Dream: everything is rational.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox asks whether the set of all ordinals is itself an ordinal [Friend]
     Full Idea: The Burali-Forti paradox says that if ordinals are defined by 'gathering' all their predecessors with the empty set, then is the set of all ordinals an ordinal? It is created the same way, so it should be a further member of this 'complete' set!
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is an example (along with Russell's more famous paradox) of the problems that began to appear in set theory in the early twentieth century. See Idea 8675 for a modern solution.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Klein summarised geometry as grouped together by transformations [Quine]
     Full Idea: Felix Klein's so-called 'Erlangerprogramm' in geometry involved characterizing the various branches of geometry by what transformations were irrelevant to each.
     From: Willard Quine (Natural Kinds [1969], p.137)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The 'integers' are the positive and negative natural numbers, plus zero [Friend]
     Full Idea: The set of 'integers' is all of the negative natural numbers, and zero, together with the positive natural numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Zero always looks like a misfit at this party. Credit and debit explain positive and negative nicely, but what is the difference between having no money, and money being irrelevant? I can be 'broke', but can the North Pole be broke?
The 'rational' numbers are those representable as fractions [Friend]
     Full Idea: The 'rational' numbers are all those that can be represented in the form m/n (i.e. as fractions), where m and n are natural numbers different from zero.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Pythagoreans needed numbers to stop there, in order to represent the whole of reality numerically. See irrational numbers for the ensuing disaster. How can a universe with a finite number of particles contain numbers that are not 'rational'?
A number is 'irrational' if it cannot be represented as a fraction [Friend]
     Full Idea: A number is 'irrational' just in case it cannot be represented as a fraction. An irrational number has an infinite non-repeating decimal expansion. Famous examples are pi and e.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: There must be an infinite number of irrational numbers. You could, for example, take the expansion of pi, and change just one digit to produce a new irrational number, and pi has an infinity of digits to tinker with.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
The natural numbers are primitive, and the ordinals are up one level of abstraction [Friend]
     Full Idea: The natural numbers are quite primitive, and are what we first learn about. The order of objects (the 'ordinals') is one level of abstraction up from the natural numbers: we impose an order on objects.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: Note the talk of 'levels of abstraction'. So is there a first level of abstraction? Dedekind disagrees with Friend (Idea 7524). I would say that natural numbers are abstracted from something, but I'm not sure what. See Structuralism in maths.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Cardinal numbers answer 'how many?', with the order being irrelevant [Friend]
     Full Idea: The 'cardinal' numbers answer the question 'How many?'; the order of presentation of the objects being counted as immaterial. Def: the cardinality of a set is the number of members of the set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: If one asks whether cardinals or ordinals are logically prior (see Ideas 7524 and 8661), I am inclined to answer 'neither'. Presenting them as answers to the questions 'how many?' and 'which comes first?' is illuminating.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The 'real' numbers (rationals and irrationals combined) is the Continuum, which has no gaps [Friend]
     Full Idea: The set of 'real' numbers, which consists of the rational numbers and the irrational numbers together, represents "the continuum", since it is like a smooth line which has no gaps (unlike the rational numbers, which have the irrationals missing).
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: The Continuum is the perfect abstract object, because a series of abstractions has arrived at a vast limit in its nature. It still has dizzying infinities contained within it, and at either end of the line. It makes you feel humble.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Raising omega to successive powers of omega reveal an infinity of infinities [Friend]
     Full Idea: After the multiples of omega, we can successively raise omega to powers of omega, and after that is done an infinite number of times we arrive at a new limit ordinal, which is called 'epsilon'. We have an infinite number of infinite ordinals.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: When most people are dumbstruck by the idea of a single infinity, Cantor unleashes an infinity of infinities, which must be the highest into the stratosphere of abstract thought that any human being has ever gone.
The first limit ordinal is omega (greater, but without predecessor), and the second is twice-omega [Friend]
     Full Idea: The first 'limit ordinal' is called 'omega', which is ordinal because it is greater than other numbers, but it has no immediate predecessor. But it has successors, and after all of those we come to twice-omega, which is the next limit ordinal.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: This is the gateway to Cantor's paradise of infinities, which Hilbert loved and defended. Who could resist the pleasure of being totally boggled (like Aristotle) by a concept such as infinity, only to have someone draw a map of it? See 8663 for sequel.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Between any two rational numbers there is an infinite number of rational numbers [Friend]
     Full Idea: Since between any two rational numbers there is an infinite number of rational numbers, we could consider that we have infinity in three dimensions: positive numbers, negative numbers, and the 'depth' of infinite numbers between any rational numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: This is before we even reach Cantor's staggering infinities (Ideas 8662 and 8663), which presumably reside at the outer reaches of all three of these dimensions of infinity. The 'deep' infinities come from fractions with huge denominators.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Is mathematics based on sets, types, categories, models or topology? [Friend]
     Full Idea: Successful competing founding disciplines in mathematics include: the various set theories, type theory, category theory, model theory and topology.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Or none of the above? Set theories are very popular. Type theory is, apparently, discredited. Shapiro has a version of structuralism based on model theory (which sound promising). Topology is the one that intrigues me...
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical theories can be translated into the language of set theory [Friend]
     Full Idea: Most of mathematics can be faithfully redescribed by classical (realist) set theory. More precisely, we can translate other mathematical theories - such as group theory, analysis, calculus, arithmetic, geometry and so on - into the language of set theory.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is why most mathematicians seem to regard set theory as foundational. We could also translate football matches into the language of atomic physics.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The number 8 in isolation from the other numbers is of no interest [Friend]
     Full Idea: There is no interest for the mathematician in studying the number 8 in isolation from the other numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This is a crucial and simple point (arising during a discussion of Shapiro's structuralism). Most things are interesting in themselves, as well as for their relationships, but mathematical 'objects' just are relationships.
In structuralism the number 8 is not quite the same in different structures, only equivalent [Friend]
     Full Idea: Structuralists give a historical account of why the 'same' number occupies different structures. Numbers are equivalent rather than identical. 8 is the immediate predecessor of 9 in the whole numbers, but in the rationals 9 has no predecessor.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: I don't become a different person if I move from a detached house to a terraced house. This suggests that 8 can't be entirely defined by its relations, and yet it is hard to see what its intrinsic nature could be, apart from the units which compose it.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Are structures 'ante rem' (before reality), or are they 'in re' (grounded in physics)? [Friend]
     Full Idea: Structuralists disagree over whether objects in structures are 'ante rem' (before reality, existing independently of whether the objects exist) or 'in re' (in reality, grounded in the real world, usually in our theories of physics).
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: Shapiro holds the first view, Hellman and Resnik the second. The first view sounds too platonist and ontologically extravagant; the second sounds too contingent and limited. The correct account is somewhere in abstractions from the real.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralist says maths concerns concepts about base objects, not base objects themselves [Friend]
     Full Idea: According to the structuralist, mathematicians study the concepts (objects of study) such as variable, greater, real, add, similar, infinite set, which are one level of abstraction up from prima facie base objects such as numbers, shapes and lines.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: This still seems to imply an ontology in which numbers, shapes and lines exist. I would have thought you could eliminate the 'base objects', and just say that the concepts are one level of abstraction up from the physical world.
Structuralism focuses on relations, predicates and functions, with objects being inessential [Friend]
     Full Idea: Structuralism says we study whole structures: objects together with their predicates, relations that bear between them, and functions that take us from one domain of objects to a range of other objects. The objects can even be eliminated.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: The unity of object and predicate is a Quinean idea. The idea that objects are inessential is the dramatic move. To me the proposal has very strong intuitive appeal. 'Eight' is meaningless out of context. Ordinality precedes cardinality? Ideas 7524/8661.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
'In re' structuralism says that the process of abstraction is pattern-spotting [Friend]
     Full Idea: In the 'in re' version of mathematical structuralism, pattern-spotting is the process of abstraction.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This might work for non-mathematical abstraction as well, if we are allowed to spot patterns within sensual experience, and patterns within abstractions. Properties are causal patterns in the world? No - properties cause patterns.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend]
     Full Idea: The main philosophical problem with the position of platonism or realism is the epistemic problem: of explaining what perception or intuition consists in; how it is possible that we should accurately detect whatever it is we are realists about.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.5)
     A reaction: The best bet, I suppose, is that the mind directly perceives concepts just as eyes perceive the physical (see Idea 8679), but it strikes me as implausible. If we have to come up with a special mental faculty for an area of knowledge, we are in trouble.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Mathematics should be treated as true whenever it is indispensable to our best physical theory [Friend]
     Full Idea: Central to naturalism about mathematics are 'indispensability arguments', to the effect that some part of mathematics is indispensable to our best physical theory, and therefore we ought to take that part of mathematics to be true.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.1)
     A reaction: Quine and Putnam hold this view; Field challenges it. It has the odd consequence that the dispensable parts (if they can be identified!) do not need to be treated as true (even though they might follow logically from the dispensable parts!). Wrong!
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend]
     Full Idea: There are not enough constraints in the Formalist view of mathematics, so there is no way to select a direction for trying to develop mathematics. There is no part of mathematics that is more important than another.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.6)
     A reaction: One might reply that an area of maths could be 'important' if lots of other areas depended on it, and big developments would ripple big changes through the interior of the subject. Formalism does, though, seem to reduce maths to a game.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Constructivism rejects too much mathematics [Friend]
     Full Idea: Too much of mathematics is rejected by the constructivist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: This was Hilbert's view. This seems to be generally true of verificationism. My favourite example is that legitimate speculations can be labelled as meaningless.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists typically retain bivalence but reject the law of excluded middle [Friend]
     Full Idea: An intuitionist typically retains bivalence, but rejects the law of excluded middle.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: The idea would be to say that only T and F are available as truth-values, but failing to be T does not ensure being F, but merely not-T. 'Unproven' is not-T, but may not be F.
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass terms just concern spread, but other terms involve both spread and individuation [Quine]
     Full Idea: 'Yellow' and 'water' are mass terms, concerned only with spread; 'apple' and 'square' are terms of divided reference, concerned with both spread and individuation.
     From: Willard Quine (Natural Kinds [1969], p.124)
     A reaction: Would you like some apple? Pass me that water. It is helpful to see that it is a requirement of 'individuation' that is missing from terms for stuff.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Once we know the mechanism of a disposition, we can eliminate 'similarity' [Quine]
     Full Idea: Once we can legitimize a disposition term by defining the relevant similarity standard, we are apt to know the mechanism of the disposition, and so by-pass the similarity.
     From: Willard Quine (Natural Kinds [1969], p.135)
     A reaction: I love mechanisms, but can we characterise mechanisms without mentioning powers and dispositions? Quine's dream is to eliminate 'similarity'.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
We judge things to be soluble if they are the same kind as, or similar to, things that do dissolve [Quine]
     Full Idea: Intuitively, what qualifies a thing as soluble though it never gets into water is that it is of the same kind as the things that actually did or will dissolve; it is similar to them.
     From: Willard Quine (Natural Kinds [1969], p.130)
     A reaction: If you can judge that the similar things 'will' dissolve, you can cut to the chase and judge that this thing will dissolve.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Structuralists call a mathematical 'object' simply a 'place in a structure' [Friend]
     Full Idea: What the mathematician labels an 'object' in her discipline, is called 'a place in a structure' by the structuralist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.5)
     A reaction: This is a strategy for dispersing the idea of an object in the world of thought, parallel to attempts to eliminate them from physical ontology (e.g. Idea 614).
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
Conditionals are just a shorthand for some proof, leaving out the details [Read]
     Full Idea: Truth enables us to carry various reports around under certain descriptions ('what Iain said') without all the bothersome detail. Similarly, conditionals enable us to transmit a record of proof without its detail.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: This is his proposed Redundancy Theory of conditionals. It grows out of the problem with Modus Ponens mentioned in Idea 14184. To say that there is always an implied 'proof' seems a large claim.
14. Science / A. Basis of Science / 3. Experiment
Science is common sense, with a sophisticated method [Quine]
     Full Idea: Sciences differ from common sense only in the degree of methodological sophistication.
     From: Willard Quine (Natural Kinds [1969], p.129)
     A reaction: Science is normal thinking about the world, but it is teamwork, with the bar set very high.
14. Science / C. Induction / 1. Induction
Induction is just more of the same: animal expectations [Quine]
     Full Idea: Induction is essentially only more of the same: animal expectation or habit formation.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: My working definition of induction is 'learning from experience', but that doesn't disagree with Quine. Lipton has a richer account of different types of induction. Quine's point is that it rests on resemblance.
Induction relies on similar effects following from each cause [Quine]
     Full Idea: Induction expresses our hopes that similar causes will have similar effects.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: Some top philosophers are also top teachers, and Quine was one of them, in his writings. He boils it down for the layman. Once again, he is pointing to the fundamental role of the similarity relation.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Grue is a puzzle because the notions of similarity and kind are dubious in science [Quine]
     Full Idea: What makes Goodman's example a puzzle is the dubious scientific standing of a general notion of similarity, or of kind.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Illuminating. It might be best expressed as revealing a problem with sortal terms, as employed by Geach, or by Wiggins. Grue is a bit silly, but sortals are subject to convention and culture. 'Natural' properties seem needed.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
General terms depend on similarities among things [Quine]
     Full Idea: The usual general term, whether a common noun or a verb or an adjective, owes its generality to some resemblance among the things referred to.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Quine has a nice analysis of the basic role of similarity in a huge amount of supposedly strict scientific thought.
To learn yellow by observation, must we be told to look at the colour? [Quine]
     Full Idea: According to the 'respects' view, our learning of yellow by ostension would have depended on our first having been told or somehow apprised that it was going to be a question of color.
     From: Willard Quine (Natural Kinds [1969], p.122)
     A reaction: Quine suggests there is just one notion of similarity, and respects can be 'abstracted' afterwards. Even the ontologically ruthless Quine admits psychological abstraction!
Standards of similarity are innate, and the spacing of qualities such as colours can be mapped [Quine]
     Full Idea: A standard of similarity is in some sense innate. The spacing of qualities (such as red, pink and blue) can be explored and mapped in the laboratory by experiments. They are needed for all learning.
     From: Willard Quine (Natural Kinds [1969], p.123)
     A reaction: This reasserts Hume's original point in more scientific terms. It is one of the undeniable facts about our perceptions of qualities and properties, no matter how platonist your view of universals may be.
Similarity is just interchangeability in the cosmic machine [Quine]
     Full Idea: Things are similar to the extent that they are interchangeable parts of the cosmic machine.
     From: Willard Quine (Natural Kinds [1969], p.134)
     A reaction: This is a major idea for Quine, because it is a means to gradually eliminate the fuzzy ideas of 'resemblance' or 'similarity' or 'natural kind' from science. I love it! Two tigers are same insofar as they are substitutable.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Studying biology presumes the laws of chemistry, and it could never contradict them [Friend]
     Full Idea: In the hierarchy of reduction, when we investigate questions in biology, we have to assume the laws of chemistry but not of economics. We could never find a law of biology that contradicted something in physics or in chemistry.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.1)
     A reaction: This spells out the idea that there is a direction of dependence between aspects of the world, though we should be cautious of talking about 'levels' (see Idea 7003). We cannot choose the direction in which reduction must go.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Concepts can be presented extensionally (as objects) or intensionally (as a characterization) [Friend]
     Full Idea: The extensional presentation of a concept is just a list of the objects falling under the concept. In contrast, an intensional presentation of a concept gives a characterization of the concept, which allows us to pick out which objects fall under it.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.4)
     A reaction: Logicians seem to favour the extensional view, because (in the standard view) sets are defined simply by their members, so concepts can be explained using sets. I take this to be a mistake. The intensional view seems obviously prior.
19. Language / C. Assigning Meanings / 3. Predicates
Projectible predicates can be universalised about the kind to which they refer [Quine]
     Full Idea: 'Projectible' predicates are predicates F and G whose shared instances all do count, for whatever reason, towards confirmation of 'All F are G'. ….A projectible predicate is one that is true of all and only the things of a kind.
     From: Willard Quine (Natural Kinds [1969], p.115-6)
     A reaction: Both Quine and Goodman are infuriatingly brief about the introduction of this concept. 'Red' is true of all ripe tomatoes, but not 'only' of them. Hardly any predicates are true only of one kind. Is that a scholastic 'proprium'?
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Quine probably regrets natural kinds now being treated as essences [Quine, by Dennett]
     Full Idea: The concept of natural kinds was reintroduced by Quine, who may now regret the way it has become a stand-in for the dubious but covertly popular concept of essences.
     From: report of Willard Quine (Natural Kinds [1969]) by Daniel C. Dennett - Consciousness Explained 12.2 n2
     A reaction: He is right that Quine would regret it, and he is right that we can't assume that there are necessary essences just because there seem to be stable natural kinds, but personally I am an essentialist, so I'm not that bothered.
If similarity has no degrees, kinds cannot be contained within one another [Quine]
     Full Idea: If similarity has no degrees there is no containing of kinds within broader kinds. If colored things are a kind, they are similar, but red things are too narrow for a kind. If red things are a kind, colored things are not similar, and it's too broad.
     From: Willard Quine (Natural Kinds [1969], p.118)
     A reaction: [compressed] I'm on Quine's side with this. We glibly talk of 'kinds', but the criteria for sorting things into kinds seems to be a mess. Quine goes on to offer a better account than the (diadic, yes-no) one rejected here.
Comparative similarity allows the kind 'colored' to contain the kind 'red' [Quine]
     Full Idea: With the triadic relation of comparative similarity, kinds can contain one another, as well as overlapping. Red and colored things can both count as kinds. Colored things all resemble one another, even though less than red things do.
     From: Willard Quine (Natural Kinds [1969], p.119)
     A reaction: [compressed] Quine claims that comparative similarity is necessary for kinds - that there be some 'foil' in a similarity - that A is more like C than B is.
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
You can't base kinds just on resemblance, because chains of resemblance are a muddle [Quine]
     Full Idea: If kinds are based on similarity, this has the Imperfect Community problem. Red round, red wooden and round wooden things all resemble one another somehow. There may be nothing outside the set resembling them, so it meets the definition of kind.
     From: Willard Quine (Natural Kinds [1969], p.120)
     A reaction: [ref. to Goodman 'Structure' 2nd 163- , which attacks Carnap on this] This suggests an invocation of Wittgenstein's family resemblance, which won't be much help for natural kinds.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
It is hard to see how regularities could be explained [Quine]
     Full Idea: Why there have been regularities is an obscure question, for it is hard to see what would count as an answer.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: This is the standard pessimism of the 20th century Humeans, but it strikes me as comparable to the pessimism about science found in Locke and Hume. Regularities are explained all the time by scientists, though the lowest level may be hopeless.