Combining Texts

All the ideas for 'On the Individuation of Attributes', 'How the Laws of Physics Lie' and 'Events'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

7. Existence / B. Change in Existence / 4. Events / a. Nature of events
The events that suit semantics may not be the events that suit causation [Lewis]
     Full Idea: There is no guarantee that events made for semantics are the same as events that are causes and effects.
     From: David Lewis (Events [1986], I)
     A reaction: This little cri de couer could be a motto for a huge amount of analytic philosophy, which (for some odd reason) thought that mathematics, logic, set theory and formal semantics were good tools for explaining nature.
Events have inbuilt essences, as necessary conditions for their occurrence [Lewis]
     Full Idea: Events have their essences built in, in the form of necessary conditions for their occurrence.
     From: David Lewis (Events [1986], III)
     A reaction: Revealing. He thinks the essence of an event is something which precedes the event. I take it as obvious that if an event has an essence, it will be some features of the event that occur in it and during it. They need to be intrinsic.
Events are classes, and so there is a mereology of their parts [Lewis]
     Full Idea: If events are classes, as I propose, then they have a mereology in the way that all classes do: the parts of a class are its subclasses.
     From: David Lewis (Events [1986], V)
     A reaction: Lewis says events are properties, which he regards as classes. It is not clear that events are strictly mereological. Could one happening be two events? Is WWII a simple sum of its parts? [see p.260]
Some events involve no change; they must, because causal histories involve unchanges [Lewis]
     Full Idea: Not all events involve change. We cannot afford to count the unchanges as nonevents, for the unchanges may be needed to complete causal histories.
     From: David Lewis (Events [1986], VI)
     A reaction: You end up calling non-changes 'events' if you commit to a simplistic theory that all causal histories consist of events. Why not allow conditions as well as events? Lewis concedes that he may be abusing language.
7. Existence / B. Change in Existence / 4. Events / c. Reduction of events
An event is a property of a unique space-time region [Lewis]
     Full Idea: I propose to identify an event with a property, or in other words with a class, a unique spatio-temporal region corresponding to where that event occurs.
     From: David Lewis (Events [1986], II)
     A reaction: [I've run together two separate bits, on p.244 and 245] Lewis cites Montague's similar view, that events are properties of times.
7. Existence / E. Categories / 4. Category Realism
Causality indicates which properties are real [Cartwright,N]
     Full Idea: Causality is a clue to what properties are real.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 9.3)
     A reaction: An interesting variant on the Shoemaker proposal that properties actually are causal. I'm not sure that there is anything more to causality that the expression in action of properties, which I take to be powers. Structures are not properties.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are very abundant (unlike universals), and are used for semantics and higher-order variables [Lewis]
     Full Idea: Properties are abundant, numbering at least beth-3 for properties of individuals alone; they are suited to serve as semantic values of arbitrarily complex predicates and gerunds, and higher-order variables. (If there are universals, they are sparse).
     From: David Lewis (Events [1986], II n2)
     A reaction: To me this is an outrageous hijacking of the notion of property which is needed for explaining the natural world. He seems to be talking about predicates. He wants to leave me with his silly universals - well I don't want them, thank you.
8. Modes of Existence / B. Properties / 12. Denial of Properties
Because things can share attributes, we cannot individuate attributes clearly [Quine]
     Full Idea: No two classes have exactly the same members, but two different attributes may be attributes of exactly the same things. Classes are identical when their members are identical. ...On the other hand, attributes have no clear principle of individuation.
     From: Willard Quine (On the Individuation of Attributes [1975], p.100)
8. Modes of Existence / E. Nominalism / 5. Class Nominalism
You only know an attribute if you know what things have it [Quine]
     Full Idea: May we not say that you know an attribute only insofar as you know what things have it?
     From: Willard Quine (On the Individuation of Attributes [1975], p.106)
     A reaction: Simple, and the best defence of class nominalism (a very implausible theory) which I have encountered. Do I have to know all the things? Do I not know 'red' if I don't know tomatoes have it?
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
No entity without identity (which requires a principle of individuation) [Quine]
     Full Idea: We have an acceptable notion of class, or physical object, or attribute, or any other sort of object, only insofar as we have an acceptable principle of individuation for that sort of object. There is no entity without identity.
     From: Willard Quine (On the Individuation of Attributes [1975], p.102)
     A reaction: Note that this is his criterion for an 'acceptable' notion. Presumably that is for science. It permits less acceptable notions which don't come up to the standard. And presumably true things can be said about the less acceptable entities.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identity of physical objects is just being coextensive [Quine]
     Full Idea: Physical objects are identical if and only if coextensive.
     From: Willard Quine (On the Individuation of Attributes [1975], p.101)
     A reaction: The supposed counterexample to this is the statue and the clay it is made of, which are said to have different modal properties (destroying the statue doesn't destroy the clay).
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Two main types of explanation are by causes, or by citing a theoretical framework [Cartwright,N]
     Full Idea: In explaining a phenomenon one can cite the causes of that phenomenon; or one can set the phenomenon in a general theoretical framework.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 4.1)
     A reaction: The thing is, you need to root an explanation in something taken as basic, and theoretical frameworks need further explanation, whereas causes seem to be basic.
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
An explanation is a model that fits a theory and predicts the phenomenological laws [Cartwright,N]
     Full Idea: To explain a phenomenon is to find a model that fits it into the basic framework of the theory and that thus allows us to derive analogues for the messy and complicated phenomenological laws that are true of it.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 8.3)
     A reaction: This summarises the core of her view in this book. She is after models rather than laws, and the models are based on causes.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Laws get the facts wrong, and explanation rests on improvements and qualifications of laws [Cartwright,N]
     Full Idea: We explain by ceteris paribus laws, by composition of causes, and by approximations that improve on what the fundamental laws dictate. In all of these cases the fundamental laws patently do not get the facts right.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: It is rather headline-grabbing to say in this case that laws do not get the facts right. If they were actually 'wrong' and 'lied', there wouldn't be much point in building explanations on them.
Laws apply to separate domains, but real explanations apply to intersecting domains [Cartwright,N]
     Full Idea: When different kinds of causes compose, we want to explain what happens in the intersection of different domains. But the laws we use are designed only to tell truly what happens in each domain separately.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Since presumably the laws are discovered through experiments which try to separate out a single domain, in those circumstances they actually are true, so they don't 'lie'.
Covering-law explanation lets us explain storms by falling barometers [Cartwright,N]
     Full Idea: Much criticism of the original covering-law model objects that it lets in too much. It seems we can explain Henry's failure to get pregnant by his taking birth control pills, and we can explain the storm by the falling barometer.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.0)
     A reaction: I take these examples to show that true explanations must be largely causal in character. The physicality of causation is what matters, not 'laws'. I'd say the same of attempts to account for causation through counterfactuals.
I disagree with the covering-law view that there is a law to cover every single case [Cartwright,N]
     Full Idea: Covering-law theorists tend to think that nature is well-regulated; in the extreme, that there is a law to cover every case. I do not.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.2)
     A reaction: The problem of coincidence is somewhere at the back of this thought. Innumerable events have their own explanations, but it is hard to explain their coincidence (see Aristotle's case of bumping into a friend in the market).
You can't explain one quail's behaviour by just saying that all quails do it [Cartwright,N]
     Full Idea: 'Why does that quail in the garden bob its head up and down in that funny way whenever it walks?' …'Because they all do'.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.5)
     A reaction: She cites this as an old complaint against the covering-law model of explanation. It captures beautifully the basic error of the approach. We want to know 'why', rather than just have a description of the pattern. 'They all do' is useful information.
The covering law view assumes that each phenomenon has a 'right' explanation [Cartwright,N]
     Full Idea: The covering-law account supposes that there is, in principle, one 'right' explanation for each phenomenon.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Presumably the law is held to be 'right', but there must be a bit of flexibility in describing the initial conditions, and the explanandum itself.
14. Science / D. Explanation / 3. Best Explanation / c. Against best explanation
In science, best explanations have regularly turned out to be false [Cartwright,N]
     Full Idea: There are a huge number of cases in the history of science where we now know our best explanations were false.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 5.3)
     A reaction: [She cites Laudan 1981 for this] The Ptolemaic system and aether are the standard example cited for this. I believe strongly in the importance of best explanation. Only a fool would just accept the best explanation available. Coherence is needed.
26. Natural Theory / C. Causation / 1. Causation
Causation is a general relation derived from instances of causal dependence [Lewis]
     Full Idea: Causation is the ancestral of causal dependence: event c causes event e iff either e depends on c, or e depends on an intermediate event which in turn depends on c, or....
     From: David Lewis (Events [1986], I)
     A reaction: This is Lewis making sure that we don't postulate some huge bogus thing called 'Causation' which is supposed to be in charge of Nature. Good point.
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
A cause won't increase the effect frequency if other causes keep interfering [Cartwright,N]
     Full Idea: A cause ought to increase the frequency of the effect, but this fact may not show up in the probabilities if other causes are at work.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 1.1)
     A reaction: [She cites Patrick Suppes for this one] Presumably in experimental situations you can weed out the interference, but that threatens to eliminate mere 'probability' entirely.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
There are fundamental explanatory laws (false!), and phenomenological laws (regularities) [Cartwright,N, by Bird]
     Full Idea: Nancy Cartwright distinguishes between 'fundamental explanatory laws', which we should not believe, and 'phenomenological laws', which are regularities established on the basis of observation.
     From: report of Nancy Cartwright (How the Laws of Physics Lie [1983]) by Alexander Bird - Philosophy of Science Ch.4
     A reaction: The distinction is helpful, so that we can be clearer about what everyone is claiming. We can probably all agree on the phenomenological laws, which are epistemological. Personally I claim truth for the best fundamental explanatory laws.
Laws of appearances are 'phenomenological'; laws of reality are 'theoretical' [Cartwright,N]
     Full Idea: Philosophers distinguish phenomenological from theoretical laws. Phenomenological laws are about appearances; theoretical ones are about the reality behind the appearances.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: I'm suspecting that Humeans only really believe in the phenomenological kind. I'm only interested in the theoretical kind, and I take inference to the best explanation to be the bridge between the two. Cartwright rejects the theoretical laws.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
Good organisation may not be true, and the truth may not organise very much [Cartwright,N]
     Full Idea: There is no reason to think that the principles that best organise will be true, nor that the principles that are true will organise much.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.5)
     A reaction: This is aimed at the Mill-Ramsey-Lewis account of laws, as axiomatisations of the observed patterns in nature.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
To get from facts to equations, we need a prepared descriptions suited to mathematics [Cartwright,N]
     Full Idea: To get from a detailed factual knowledge of a situation to an equation, we must prepare the description of the situation to meet the mathematical needs of the theory.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: She is clearly on to something here, as Galileo is blatantly wrong in his claim that the book of nature is written in mathematics. Mathematics is the best we can manage in getting a grip on the chaos.
Simple laws have quite different outcomes when they act in combinations [Cartwright,N]
     Full Idea: For explanation simple laws must have the same form when they act together as when they act singly. ..But then what the law states cannot literally be true, for the consequences that occur if it acts alone are not what occurs when they act in combination.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.6)
     A reaction: This is Cartwright's basic thesis. Her point is that the laws 'lie', because they claim to predict a particular outcome which never ever actually occurs. She says we could know all the laws, and still not be able to explain anything.
There are few laws for when one theory meets another [Cartwright,N]
     Full Idea: Where theories intersect, laws are usually hard to come by.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.3)
     A reaction: There are attempts at so-called 'bridge laws', to get from complex theories to simple ones, but her point is well made about theories on the same 'level'.