Combining Texts

All the ideas for 'Reference and Modality', 'The Decline of the West' and 'Set Theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Maybe we can quantify modally if the objects are intensional, but it seems unlikely [Quine]
     Full Idea: Perhaps there is no objection to quantifying into modal contexts as long as the values of any variables thus quantified are limited to intensional objects, but they also lead to disturbing examples.
     From: Willard Quine (Reference and Modality [1953], §3)
     A reaction: [Quine goes on to give his examples] I take it that possibilities are features of actual reality, not merely objects of thought. The problem is that they are harder to know than actual objects.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Failure of substitutivity shows that a personal name is not purely referential [Quine]
     Full Idea: Failure of substitutivity shows that the occurrence of a personal name is not purely referential.
     From: Willard Quine (Reference and Modality [1953], §1)
     A reaction: I don't think I understand the notion of a name being 'purely' referential, as if it somehow ceased to be a word, and was completely transparent to the named object.
5. Theory of Logic / G. Quantification / 1. Quantification
Quantifying into referentially opaque contexts often produces nonsense [Quine]
     Full Idea: If to a referentially opaque context of a variable we apply a quantifier, with the intention that it govern that variable from outside the referentially opaque context, then what we commonly end up with is unintended sense or nonsense.
     From: Willard Quine (Reference and Modality [1953], §2)
9. Objects / D. Essence of Objects / 15. Against Essentialism
Quantification into modal contexts requires objects to have an essence [Quine]
     Full Idea: A reversion to Aristotelian essentialism is required if quantification into modal contexts is to be insisted on. An object must be seen as having some of its traits necessarily.
     From: Willard Quine (Reference and Modality [1953], §3)
     A reaction: This thought leads directly to Kripke's proposal of rigid designation of objects (and Lewis response of counterparts), which really gets modal logic off the ground. Quine's challenge remains - the modal logic entails a huge metaphysical commitment.
10. Modality / A. Necessity / 4. De re / De dicto modality
To be necessarily greater than 7 is not a trait of 7, but depends on how 7 is referred to [Quine]
     Full Idea: To be necessarily greater than 7 is not a trait of a number, but depends on the manner of referring to the number.
     From: Willard Quine (Reference and Modality [1953], §2)
     A reaction: The most concise quotation of Quine's objection to 'de re' modality. The point is whether the number might have been referred to as 'the number of planets'. So many of these problems are solved by fixing unambiguous propositions first.
10. Modality / A. Necessity / 11. Denial of Necessity
Whether 9 is necessarily greater than 7 depends on how '9' is described [Quine, by Fine,K]
     Full Idea: Quine's metaphysical argument is that if 9 is 7+2 the number 9 will be necessarily greater than 7, but when 9 is described as the number of planets, the number will not be necessarily greater than 7. The necessity depends on how it is described.
     From: report of Willard Quine (Reference and Modality [1953]) by Kit Fine - Intro to 'Modality and Tense' p. 3
     A reaction: Thus necessity would be entirely 'de dicto' and not 'de re'. It sounds like a feeble argument. If I describe the law of identity (a=a) as 'my least favourite logical principle', that won't make it contingent. Describe 9, or refer to it? See Idea 9203.
Necessity only applies to objects if they are distinctively specified [Quine]
     Full Idea: Necessity does not properly apply to the fulfilment of conditions by objects (such as the number which numbers the planets), apart from special ways of specifying them.
     From: Willard Quine (Reference and Modality [1953], §3)
     A reaction: This appears to say that the only necessity is 'de dicto', and that there is no such thing as 'de re' necessity (of the thing in itself). How can Quine deny that there might be de re necessities? His point is epistemological - how can we know them?
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
We can't quantify in modal contexts, because the modality depends on descriptions, not objects [Quine, by Fine,K]
     Full Idea: 'Necessarily 9>7' may be true while the sentence 'necessarily the number of planets < 7' is false, even though it is obtained by substituting a coreferential term. So quantification in these contexts is unintelligible, without a clear object.
     From: report of Willard Quine (Reference and Modality [1953]) by Kit Fine - Intro to 'Modality and Tense' p. 4
     A reaction: This is Quine's second argument against modality. See Idea 9201 for his first. Fine attempts to refute it. The standard reply seems to be to insist that 9 must therefore be an object, which pushes materialist philosophers into reluctant platonism.
24. Political Theory / B. Nature of a State / 5. Culture
Human cultures are organisms which grow, and then fade and die [Spengler, by Bowie]
     Full Idea: Spengler relies upon the idea of human cultures as organisms which grow and then inevitably die, having lost their vitality.
     From: report of Oswald Spengler (The Decline of the West [1918]) by Andrew Bowie - Introduction to German Philosophy 2 'Herder'
     A reaction: He should have thought more about technology. If the 'West' collapses and is replaced by China (say), the new Chinese culture will be barely distinguishable from the West, because they will pursue similar technologies.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / e. Anti scientific essentialism
We can't say 'necessarily if x is in water then x dissolves' if we can't quantify modally [Quine]
     Full Idea: To say an object is soluble in water is to say that it would dissolve if it were in water,..which implies that 'necessarily if x is in water then x dissolves'. Yet we do not know if there is a suitable sense of 'necessarily' into which we can so quantify.
     From: Willard Quine (Reference and Modality [1953], §4)
     A reaction: This is why there has been a huge revival of scientific essentialism - because Krike seems to offer exacty the account which Quine said was missing. So can you have modal logic without rigid designation?