Combining Texts

All the ideas for 'The Roots of Reference', 'Number Determiners, Numbers, Arithmetic' and 'Identity'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An adjective contributes semantically to a noun phrase [Hofweber]
     Full Idea: The semantic value of a determiner (an adjective) is a function from semantic values to nouns to semantic values of full noun phrases.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §3.1)
     A reaction: This kind of states the obvious (assuming one has a compositional view of sentences), but his point is that you can't just eliminate adjectival uses of numbers by analysing them away, as if they didn't do anything.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Quantifiers for domains and for inference come apart if there are no entities [Hofweber]
     Full Idea: Quantifiers have two functions in communication - to range over a domain of entities, and to have an inferential role (e.g. F(t)→'something is F'). In ordinary language these two come apart for singular terms not standing for any entities.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: This simple observations seems to me to be wonderfully illuminating of a whole raft of problems, the sort which logicians get steamed up about, and ordinary speakers don't. Context is the key to 90% of philosophical difficulties (?). See Idea 10008.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
'2 + 2 = 4' can be read as either singular or plural [Hofweber]
     Full Idea: There are two ways to read to read '2 + 2 = 4', as singular ('two and two is four'), and as plural ('two and two are four').
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.1)
     A reaction: Hofweber doesn't notice that this phenomenon occurs elsewhere in English. 'The team is playing well', or 'the team are splitting up'; it simply depends whether you are holding the group in though as an entity, or as individuals. Important for numbers.
What is the relation of number words as singular-terms, adjectives/determiners, and symbols? [Hofweber]
     Full Idea: There are three different uses of the number words: the singular-term use (as in 'the number of moons of Jupiter is four'), the adjectival (or determiner) use (as in 'Jupiter has four moons'), and the symbolic use (as in '4'). How are they related?
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §1)
     A reaction: A classic philosophy of language approach to the problem - try to give the truth-conditions for all three types. The main problem is that the first one implies that numbers are objects, whereas the others do not. Why did Frege give priority to the first?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
It is controversial whether only 'numerical identity' allows two things to be counted as one [Noonan]
     Full Idea: 'Numerical identity' implies the controversial view that it is the only identity relation in accordance with which we can properly count (or number) things: x and y are to be properly counted as one just in case they are numerically identical.
     From: Harold Noonan (Identity [2009], §1)
     A reaction: Noonan cites Geach, presumably to remind us of relative identity, where two things may be one or two, depending on what they are relative to. The one 'guard on the gate' may actually be two men.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Why is arithmetic hard to learn, but then becomes easy? [Hofweber]
     Full Idea: Why is arithmetic so hard to learn, and why does it seem so easy to us now? For example, subtracting 789 from 26,789.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.2)
     A reaction: His answer that we find thinking about objects very easy, but as children we have to learn with difficulty the conversion of the determiner/adjectival number words, so that we come to think of them as objects.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Arithmetic is not about a domain of entities, as the quantifiers are purely inferential [Hofweber]
     Full Idea: I argue for an internalist conception of arithmetic. Arithmetic is not about a domain of entities, not even quantified entities. Quantifiers over natural numbers occur in their inferential-role reading in which they merely generalize over the instances.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: Hofweber offers the hope that modern semantics can disentangle the confusions in platonist arithmetic. Very interesting. The fear is that after digging into the semantics for twenty years, you find the same old problems re-emerging at a lower level.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Arithmetic doesn’t simply depend on objects, since it is true of fictional objects [Hofweber]
     Full Idea: That 'two dogs are more than one' is clearly true, but its truth doesn't depend on the existence of dogs, as is seen if we consider 'two unicorns are more than one', which is true even though there are no unicorns.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.2)
     A reaction: This is an objection to crude empirical accounts of arithmetic, but the idea would be that there is a generalisation drawn from objects (dogs will do nicely), which then apply to any entities. If unicorns are entities, it will be true of them.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
We might eliminate adjectival numbers by analysing them into blocks of quantifiers [Hofweber]
     Full Idea: Determiner uses of number words may disappear on analysis. This is inspired by Russell's elimination of the word 'the'. The number becomes blocks of first-order quantifiers at the level of semantic representation.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §2)
     A reaction: [compressed] The proposal comes from platonists, who argue that numbers cannot be analysed away if they are objects. Hofweber says the analogy with Russell is wrong, as 'the' can't occur in different syntactic positions, the way number words can.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
First-order logic captures the inferential relations of numbers, but not the semantics [Hofweber]
     Full Idea: Representing arithmetic formally we do not primarily care about semantic features of number words. We are interested in capturing the inferential relations of arithmetical statements to one another, which can be done elegantly in first-order logic.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: This begins to pinpoint the difference between the approach of logicists like Frege, and those who are interested in the psychology of numbers, and the empirical roots of numbers in the process of counting.
8. Modes of Existence / C. Powers and Dispositions / 3. Powers as Derived
Dispositions are physical states of mechanism; when known, these replace the old disposition term [Quine]
     Full Idea: Each disposition, in my view, is a physical state or mechanism. ...In some cases nowadays we understand the physical details and set them forth explicitly in terms of the arrangement and interaction of small bodies. This replaces the old disposition.
     From: Willard Quine (The Roots of Reference [1990], p.11), quoted by Stephen Mumford - Dispositions 01.3
     A reaction: A challenge to the dispositions and powers view of nature, one which rests on the 'categorical' structural properties, rather than the 'hypothetical' dispositions. But can we define a mechanism without mentioning its powers?
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
I could have died at five, but the summation of my adult stages could not [Noonan]
     Full Idea: Persons have different modal properties from the summations of person-stages. …I might have died when I was five. But the maximal summation of person-stages which perdurantists say is me could not have had a temporal extent of a mere five years.
     From: Harold Noonan (Identity [2009], §5)
     A reaction: Thus the summation of stages seems to fail Leibniz's Law, since truths about a part are not true of the whole. But my foot might be amputated without me being amputated. The objection is the fallacy of composition?
9. Objects / E. Objects over Time / 5. Temporal Parts
Stage theorists accept four-dimensionalism, but call each stage a whole object [Noonan]
     Full Idea: Stage theorists, accepting the ontology of perdurance, modify the semantics to secure the result that fatness is a property of a cat. Every temporal part of a cat (such as Tabby-on-Monday) is a cat. …(but they pay a price over the counting of cats).
     From: Harold Noonan (Identity [2009], §5)
     A reaction: [Noonan cites Hawley and Sider for this view. The final parenthesis compresses Noonan] I would take the difficulty over counting cats to be fatal to the view. It produces too many cats, or too few, or denies counting altogether.
9. Objects / F. Identity among Objects / 2. Defining Identity
Problems about identity can't even be formulated without the concept of identity [Noonan]
     Full Idea: If identity is problematic, it is difficult to see how the problem could be resolved, since it is difficult to see how a thinker could have the conceptual resources with which to explain the concept of identity whilst lacking that concept itself.
     From: Harold Noonan (Identity [2009], §1)
     A reaction: I don't think I accept this. We can comprehend the idea of a mind that didn't think in terms of identities (at least for objects). I suppose any relation of a mind to the world has to distinguish things in some way. Does the Parmenidean One have identity?
Identity is usually defined as the equivalence relation satisfying Leibniz's Law [Noonan]
     Full Idea: Numerical identity is usually defined as the equivalence relation (or: the reflexive relation) satisfying Leibniz's Law, the indiscernibility of identicals, where everything true of x is true of y.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: Noonan says this must include 'is identical to x' among the truths, and so is circular
Identity definitions (such as self-identity, or the smallest equivalence relation) are usually circular [Noonan]
     Full Idea: Identity can be circularly defined, as 'the relation everything has to itself and to nothing else', …or as 'the smallest equivalence relation'.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: The first one is circular because 'nothing else' implies identity. The second is circular because it has to quantify over all equivalence relations. (So says Noonan).
Identity can only be characterised in a second-order language [Noonan]
     Full Idea: There is no condition in a first-order language for a predicate to express identity, rather than indiscernibility within the resources of the language. Leibniz's Law is statable in a second-order language, so identity can be uniquely characterised.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: The point is that first-order languages only refer to all objects, but you need to refer to all properties to include Leibniz's Law. Quine's 'Identity, Ostension and Hypostasis' is the source of this idea.
9. Objects / F. Identity among Objects / 8. Leibniz's Law
Indiscernibility is basic to our understanding of identity and distinctness [Noonan]
     Full Idea: Leibniz's Law (the indiscernibility of identicals) appears to be crucial to our understanding of identity, and, more particularly, to our understanding of distinctness.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: True, but indiscernibility concerns the epistemology, and identity concerns the ontology.
Leibniz's Law must be kept separate from the substitutivity principle [Noonan]
     Full Idea: Leibniz's Law must be clearly distinguished from the substitutivity principle, that if 'a' and 'b' are codesignators they are substitutable salva veritate.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: He gives a bunch of well-known problem cases for substitutivity. The Morning Star, Giorgione, and the number of planets won't work. Belief contexts, or facts about spelling, may not be substitutable.
15. Nature of Minds / C. Capacities of Minds / 4. Objectification
Our minds are at their best when reasoning about objects [Hofweber]
     Full Idea: Our minds mainly reason about objects. Most cognitive problems we are faced with deal with particular objects, whether they are people or material things. Reasoning about them is what our minds are good at.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.3)
     A reaction: Hofweber is suggesting this as an explanation of why we continually reify various concepts, especially numbers. Very plausible. It works for qualities of character, and explains our tendency to talk about universals as objects ('redness').