Combining Texts

All the ideas for 'Natural Kinds', 'Philosophy of Mind: 1950-2000' and 'Cardinality, Counting and Equinumerosity'

unexpand these ideas     |    start again     |     specify just one area for these texts


35 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophy is continuous with science, and has no external vantage point [Quine]
     Full Idea: I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boat. …There is no external vantage point, no first philosophy.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: Philosophy is generalisation. Science holds the upper hand, because it settles the subject-matter to be generalised.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
We now have a much more sophisticated understanding of logical form in language [Burge]
     Full Idea: The second half of the twentieth century has seen the development of a vastly more sophisticated sense of logical form, as applied to natural languages.
     From: Tyler Burge (Philosophy of Mind: 1950-2000 [2005], p.462)
     A reaction: Burge cites this as one of the three big modern developments (along with the critique of logical positivism, and direct reference/anti-individualism). Vagueness may be the last frontier for this development.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Klein summarised geometry as grouped together by transformations [Quine]
     Full Idea: Felix Klein's so-called 'Erlangerprogramm' in geometry involved characterizing the various branches of geometry by what transformations were irrelevant to each.
     From: Willard Quine (Natural Kinds [1969], p.137)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
The meaning of a number isn't just the numerals leading up to it [Heck]
     Full Idea: My knowing what the number '33' denotes cannot consist in my knowing that it denotes the number of decimal numbers between '1' and '33', because I would know that even if it were in hexadecimal (which I don't know well).
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: Obviously you wouldn't understand '33' if you didn't understand what '33 things' meant.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A basic grasp of cardinal numbers needs an understanding of equinumerosity [Heck]
     Full Idea: An appreciation of the connection between sameness of number and equinumerosity that it reports is essential to even the most primitive grasp of the concept of cardinal number.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting, numerals are used, not mentioned (as objects that have to correlated) [Heck]
     Full Idea: One need not conceive of the numerals as objects in their own right in order to count. The numerals are not mentioned in counting (as objects to be correlated with baseball players), but are used.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: He observes that when you name the team, you aren't correlating a list of names with the players. I could correlate any old tags with some objects, and you could tell me the cardinality denoted by the last tag. I do ordinals, you do cardinals.
Is counting basically mindless, and independent of the cardinality involved? [Heck]
     Full Idea: I am not denying that counting can be done mindlessly, without making judgments of cardinality along the way. ...But the question is whether counting is, as it were, fundamentally a mindless exercise.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: He says no. It seems to me like going on a journey, where you can forget where you are going and where you have got to so far, but those underlying facts are always there. If you just tag things with unknown foreign numbers, you aren't really counting.
Counting is the assignment of successively larger cardinal numbers to collections [Heck]
     Full Idea: Counting is not mere tagging: it is the successive assignment of cardinal numbers to increasingly large collections of objects.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: That the cardinals are 'successive' seems to mean that they are ordinals as well. If you don't know that 'seven' means a cardinality, as well as 'successor of six', you haven't understood it. Days of the week have successors. Does PA capture cardinality?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Understanding 'just as many' needn't involve grasping one-one correspondence [Heck]
     Full Idea: It is far from obvious that knowing what 'just as many' means requires knowing what a one-one correspondence is. The notion of a one-one correspondence is very sophisticated, and it is far from clear that five-year-olds have any grasp of it.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: The point is that children decide 'just as many' by counting each group and arriving at the same numeral, not by matching up. He cites psychological research by Gelman and Galistel.
We can know 'just as many' without the concepts of equinumerosity or numbers [Heck]
     Full Idea: 'Just as many' is independent of the ability to count, and we shouldn't characterise equinumerosity through counting. It is also independent of the concept of number. Enough cookies to go round doesn't need how many cookies.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: [compressed] He talks of children having an 'operational' ability which is independent of these more sophisticated concepts. Interesting. You see how early man could relate 'how many' prior to the development of numbers.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Frege's Theorem explains why the numbers satisfy the Peano axioms [Heck]
     Full Idea: The interest of Frege's Theorem is that it offers us an explanation of the fact that the numbers satisfy the Dedekind-Peano axioms.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says 'explaining' does not make it more fundamental, since all proofs explain why their conclusions hold.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Children can use numbers, without a concept of them as countable objects [Heck]
     Full Idea: For a long time my daughter had no understanding of the question of how many numerals or numbers there are between 'one' and 'five'. I think she lacked the concept of numerals as objects which can themselves be counted.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: I can't make any sense of numbers actually being objects, though clearly treating all sorts of things as objects helps thinking (as in 'the victory is all that matters').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Equinumerosity is not the same concept as one-one correspondence [Heck]
     Full Idea: Equinumerosity is not the same concept as being in one-one correspondence with.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says this is the case, even if they are coextensive, like renate and cordate. You can see that five loaves are equinumerous with five fishes, without doing a one-one matchup.
We can understand cardinality without the idea of one-one correspondence [Heck]
     Full Idea: One can have a perfectly serviceable concept of cardinality without so much as having the concept of one-one correspondence.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: This is the culmination of a lengthy discussion. It includes citations about the psychology of children's counting. Cardinality needs one group of things, and 1-1 needs two groups.
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass terms just concern spread, but other terms involve both spread and individuation [Quine]
     Full Idea: 'Yellow' and 'water' are mass terms, concerned only with spread; 'apple' and 'square' are terms of divided reference, concerned with both spread and individuation.
     From: Willard Quine (Natural Kinds [1969], p.124)
     A reaction: Would you like some apple? Pass me that water. It is helpful to see that it is a requirement of 'individuation' that is missing from terms for stuff.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Once we know the mechanism of a disposition, we can eliminate 'similarity' [Quine]
     Full Idea: Once we can legitimize a disposition term by defining the relevant similarity standard, we are apt to know the mechanism of the disposition, and so by-pass the similarity.
     From: Willard Quine (Natural Kinds [1969], p.135)
     A reaction: I love mechanisms, but can we characterise mechanisms without mentioning powers and dispositions? Quine's dream is to eliminate 'similarity'.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
We judge things to be soluble if they are the same kind as, or similar to, things that do dissolve [Quine]
     Full Idea: Intuitively, what qualifies a thing as soluble though it never gets into water is that it is of the same kind as the things that actually did or will dissolve; it is similar to them.
     From: Willard Quine (Natural Kinds [1969], p.130)
     A reaction: If you can judge that the similar things 'will' dissolve, you can cut to the chase and judge that this thing will dissolve.
14. Science / A. Basis of Science / 3. Experiment
Science is common sense, with a sophisticated method [Quine]
     Full Idea: Sciences differ from common sense only in the degree of methodological sophistication.
     From: Willard Quine (Natural Kinds [1969], p.129)
     A reaction: Science is normal thinking about the world, but it is teamwork, with the bar set very high.
14. Science / C. Induction / 1. Induction
Induction is just more of the same: animal expectations [Quine]
     Full Idea: Induction is essentially only more of the same: animal expectation or habit formation.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: My working definition of induction is 'learning from experience', but that doesn't disagree with Quine. Lipton has a richer account of different types of induction. Quine's point is that it rests on resemblance.
Induction relies on similar effects following from each cause [Quine]
     Full Idea: Induction expresses our hopes that similar causes will have similar effects.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: Some top philosophers are also top teachers, and Quine was one of them, in his writings. He boils it down for the layman. Once again, he is pointing to the fundamental role of the similarity relation.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Grue is a puzzle because the notions of similarity and kind are dubious in science [Quine]
     Full Idea: What makes Goodman's example a puzzle is the dubious scientific standing of a general notion of similarity, or of kind.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Illuminating. It might be best expressed as revealing a problem with sortal terms, as employed by Geach, or by Wiggins. Grue is a bit silly, but sortals are subject to convention and culture. 'Natural' properties seem needed.
15. Nature of Minds / A. Nature of Mind / 6. Anti-Individualism
Anti-individualism says the environment is involved in the individuation of some mental states [Burge]
     Full Idea: Anti-individualism is the view that not all of an individual's mental states and events can be type-individuated independently of the nature of the entities in the individual's physical or social environment environment.
     From: Tyler Burge (Philosophy of Mind: 1950-2000 [2005], p.453)
     A reaction: While the Twin Earth experiment emphasises the physical environment, Burge has been responsible for emphasising the social environment. The suspicion is that the whole concept of 'individual' minds will collapse on this view.
Broad concepts suggest an extension of the mind into the environment (less computer-like) [Burge]
     Full Idea: Certain thought experiments made trouble for standard functionalism, which limits input/output to the surface of an individual; proposals to extend this into the environment reduces the reliance on a computer paradigm, but increases complexity.
     From: Tyler Burge (Philosophy of Mind: 1950-2000 [2005], p.454)
     A reaction: [He has the Twin Earth experiment in mind] The jury is out on this, but it looks a bit of a slippery slope. Accounts of action and responsibility need a fairly sharp concept of an individual. Externalism begins to look like just a new scepticism.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
General terms depend on similarities among things [Quine]
     Full Idea: The usual general term, whether a common noun or a verb or an adjective, owes its generality to some resemblance among the things referred to.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Quine has a nice analysis of the basic role of similarity in a huge amount of supposedly strict scientific thought.
To learn yellow by observation, must we be told to look at the colour? [Quine]
     Full Idea: According to the 'respects' view, our learning of yellow by ostension would have depended on our first having been told or somehow apprised that it was going to be a question of color.
     From: Willard Quine (Natural Kinds [1969], p.122)
     A reaction: Quine suggests there is just one notion of similarity, and respects can be 'abstracted' afterwards. Even the ontologically ruthless Quine admits psychological abstraction!
Standards of similarity are innate, and the spacing of qualities such as colours can be mapped [Quine]
     Full Idea: A standard of similarity is in some sense innate. The spacing of qualities (such as red, pink and blue) can be explored and mapped in the laboratory by experiments. They are needed for all learning.
     From: Willard Quine (Natural Kinds [1969], p.123)
     A reaction: This reasserts Hume's original point in more scientific terms. It is one of the undeniable facts about our perceptions of qualities and properties, no matter how platonist your view of universals may be.
Similarity is just interchangeability in the cosmic machine [Quine]
     Full Idea: Things are similar to the extent that they are interchangeable parts of the cosmic machine.
     From: Willard Quine (Natural Kinds [1969], p.134)
     A reaction: This is a major idea for Quine, because it is a means to gradually eliminate the fuzzy ideas of 'resemblance' or 'similarity' or 'natural kind' from science. I love it! Two tigers are same insofar as they are substitutable.
16. Persons / C. Self-Awareness / 2. Knowing the Self
Anti-individualism may be incompatible with some sorts of self-knowledge [Burge]
     Full Idea: The idea of anti-individualism raised problems about self-knowledge. The question is whether anti-individualism is compatible with some sort of authoritative or privileged warrant for certain types of self-knowledge.
     From: Tyler Burge (Philosophy of Mind: 1950-2000 [2005], p.457)
     A reaction: [See under 'Nature of Minds' for 'Anti-individualism'] The thought is that if your mind is not entirely in your head, you can no longer be an expert on it. It might go the other way: obviously we can be self-experts, so anti-individualism is wrong.
17. Mind and Body / C. Functionalism / 1. Functionalism
Some qualities of experience, like blurred vision, have no function at all [Burge]
     Full Idea: There appear to be qualitative aspects of experience that have no function in the life of the organism. They constitute dysfunction or noise. Blurriness in a visual experience is an example.
     From: Tyler Burge (Philosophy of Mind: 1950-2000 [2005], p.460)
     A reaction: The best account of blurred vision would seem to be adverbial - I see 'in a blurred way' (nay, blurredly). Hence maybe blurred vision is functional, but it just isn't functioning very well.
19. Language / C. Assigning Meanings / 3. Predicates
Projectible predicates can be universalised about the kind to which they refer [Quine]
     Full Idea: 'Projectible' predicates are predicates F and G whose shared instances all do count, for whatever reason, towards confirmation of 'All F are G'. ….A projectible predicate is one that is true of all and only the things of a kind.
     From: Willard Quine (Natural Kinds [1969], p.115-6)
     A reaction: Both Quine and Goodman are infuriatingly brief about the introduction of this concept. 'Red' is true of all ripe tomatoes, but not 'only' of them. Hardly any predicates are true only of one kind. Is that a scholastic 'proprium'?
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Quine probably regrets natural kinds now being treated as essences [Quine, by Dennett]
     Full Idea: The concept of natural kinds was reintroduced by Quine, who may now regret the way it has become a stand-in for the dubious but covertly popular concept of essences.
     From: report of Willard Quine (Natural Kinds [1969]) by Daniel C. Dennett - Consciousness Explained 12.2 n2
     A reaction: He is right that Quine would regret it, and he is right that we can't assume that there are necessary essences just because there seem to be stable natural kinds, but personally I am an essentialist, so I'm not that bothered.
If similarity has no degrees, kinds cannot be contained within one another [Quine]
     Full Idea: If similarity has no degrees there is no containing of kinds within broader kinds. If colored things are a kind, they are similar, but red things are too narrow for a kind. If red things are a kind, colored things are not similar, and it's too broad.
     From: Willard Quine (Natural Kinds [1969], p.118)
     A reaction: [compressed] I'm on Quine's side with this. We glibly talk of 'kinds', but the criteria for sorting things into kinds seems to be a mess. Quine goes on to offer a better account than the (diadic, yes-no) one rejected here.
Comparative similarity allows the kind 'colored' to contain the kind 'red' [Quine]
     Full Idea: With the triadic relation of comparative similarity, kinds can contain one another, as well as overlapping. Red and colored things can both count as kinds. Colored things all resemble one another, even though less than red things do.
     From: Willard Quine (Natural Kinds [1969], p.119)
     A reaction: [compressed] Quine claims that comparative similarity is necessary for kinds - that there be some 'foil' in a similarity - that A is more like C than B is.
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
You can't base kinds just on resemblance, because chains of resemblance are a muddle [Quine]
     Full Idea: If kinds are based on similarity, this has the Imperfect Community problem. Red round, red wooden and round wooden things all resemble one another somehow. There may be nothing outside the set resembling them, so it meets the definition of kind.
     From: Willard Quine (Natural Kinds [1969], p.120)
     A reaction: [ref. to Goodman 'Structure' 2nd 163- , which attacks Carnap on this] This suggests an invocation of Wittgenstein's family resemblance, which won't be much help for natural kinds.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
It is hard to see how regularities could be explained [Quine]
     Full Idea: Why there have been regularities is an obscure question, for it is hard to see what would count as an answer.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: This is the standard pessimism of the 20th century Humeans, but it strikes me as comparable to the pessimism about science found in Locke and Hume. Regularities are explained all the time by scientists, though the lowest level may be hopeless.