Combining Texts

All the ideas for 'Natural Kinds', 'Axiomatic Theories of Truth (2005 ver)' and 'Necessary Truth'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophy is continuous with science, and has no external vantage point [Quine]
     Full Idea: I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boat. …There is no external vantage point, no first philosophy.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: Philosophy is generalisation. Science holds the upper hand, because it settles the subject-matter to be generalised.
3. Truth / A. Truth Problems / 2. Defining Truth
Truth definitions don't produce a good theory, because they go beyond your current language [Halbach]
     Full Idea: It is far from clear that a definition of truth can lead to a philosophically satisfactory theory of truth. Tarski's theorem on the undefinability of the truth predicate needs resources beyond those of the language for which it is being defined.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: The idea is that you need a 'metalanguage' for the definition. If I say 'p' is a true sentence in language 'L', I am not making that observation from within language L. The dream is a theory confined to the object language.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
In semantic theories of truth, the predicate is in an object-language, and the definition in a metalanguage [Halbach]
     Full Idea: In semantic theories of truth (Tarski or Kripke), a truth predicate is defined for an object-language. This definition is carried out in a metalanguage, which is typically taken to include set theory or another strong theory or expressive language.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: Presumably the metalanguage includes set theory because that connects it with mathematics, and enables it to be formally rigorous. Tarski showed, in his undefinability theorem, that the meta-language must have increased resources.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Should axiomatic truth be 'conservative' - not proving anything apart from implications of the axioms? [Halbach]
     Full Idea: If truth is not explanatory, truth axioms should not allow proof of new theorems not involving the truth predicate. It is hence said that axiomatic truth should be 'conservative' - not implying further sentences beyond what the axioms can prove.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: [compressed]
If truth is defined it can be eliminated, whereas axiomatic truth has various commitments [Halbach]
     Full Idea: If truth can be explicitly defined, it can be eliminated, whereas an axiomatized notion of truth may bring all kinds of commitments.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: The general principle that anything which can be defined can be eliminated (in an abstract theory, presumably, not in nature!) raises interesting questions about how many true theories there are which are all equivalent to one another.
Axiomatic theories of truth need a weak logical framework, and not a strong metatheory [Halbach]
     Full Idea: Axiomatic theories of truth can be presented within very weak logical frameworks which require very few resources, and avoid the need for a strong metalanguage and metatheory.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
Instead of a truth definition, add a primitive truth predicate, and axioms for how it works [Halbach]
     Full Idea: The axiomatic approach does not presuppose that truth can be defined. Instead, a formal language is expanded by a new primitive predicate of truth, and axioms for that predicate are then laid down.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1)
     A reaction: Idea 15647 explains why Halbach thinks the definition route is no good.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationists say truth merely serves to express infinite conjunctions [Halbach]
     Full Idea: According to many deflationists, truth serves merely the purpose of expressing infinite conjunctions.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.3)
     A reaction: That is, it asserts sentences that are too numerous to express individually. It also seems, on a deflationist view, to serve for anaphoric reference to sentences, such as 'what she just said is true'.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
To prove the consistency of set theory, we must go beyond set theory [Halbach]
     Full Idea: The consistency of set theory cannot be established without assumptions transcending set theory.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 2.1)
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
We can use truth instead of ontologically loaded second-order comprehension assumptions about properties [Halbach]
     Full Idea: The reduction of 2nd-order theories (of properties or sets) to axiomatic theories of truth may be conceived as a form of reductive nominalism, replacing existence assumptions (for comprehension axioms) by ontologically innocent truth assumptions.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.1)
     A reaction: I like this very much, as weeding properties out of logic (without weeding them out of the world). So-called properties in logic are too abundant, so there is a misfit with their role in science.
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Instead of saying x has a property, we can say a formula is true of x - as long as we have 'true' [Halbach]
     Full Idea: Quantification over (certain) properties can be mimicked in a language with a truth predicate by quantifying over formulas. Instead of saying that Tom has the property of being a poor philosopher, we can say 'x is a poor philosopher' is true of Tom.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 1.1)
     A reaction: I love this, and think it is very important. He talks of 'mimicking' properties, but I see it as philosophers mistakenly attributing properties, when actually what they were doing is asserting truths involving certain predicates.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Klein summarised geometry as grouped together by transformations [Quine]
     Full Idea: Felix Klein's so-called 'Erlangerprogramm' in geometry involved characterizing the various branches of geometry by what transformations were irrelevant to each.
     From: Willard Quine (Natural Kinds [1969], p.137)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass terms just concern spread, but other terms involve both spread and individuation [Quine]
     Full Idea: 'Yellow' and 'water' are mass terms, concerned only with spread; 'apple' and 'square' are terms of divided reference, concerned with both spread and individuation.
     From: Willard Quine (Natural Kinds [1969], p.124)
     A reaction: Would you like some apple? Pass me that water. It is helpful to see that it is a requirement of 'individuation' that is missing from terms for stuff.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Once we know the mechanism of a disposition, we can eliminate 'similarity' [Quine]
     Full Idea: Once we can legitimize a disposition term by defining the relevant similarity standard, we are apt to know the mechanism of the disposition, and so by-pass the similarity.
     From: Willard Quine (Natural Kinds [1969], p.135)
     A reaction: I love mechanisms, but can we characterise mechanisms without mentioning powers and dispositions? Quine's dream is to eliminate 'similarity'.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
We judge things to be soluble if they are the same kind as, or similar to, things that do dissolve [Quine]
     Full Idea: Intuitively, what qualifies a thing as soluble though it never gets into water is that it is of the same kind as the things that actually did or will dissolve; it is similar to them.
     From: Willard Quine (Natural Kinds [1969], p.130)
     A reaction: If you can judge that the similar things 'will' dissolve, you can cut to the chase and judge that this thing will dissolve.
10. Modality / A. Necessity / 11. Denial of Necessity
There is no necessity higher than natural necessity, and that is just regularity [Quine]
     Full Idea: In principle I see no higher or more austere necessity than natural necessity; and in natural necessity, or our attribution of it, I see only Hume's regularities
     From: Willard Quine (Necessary Truth [1963], p.76)
     A reaction: Presumably this allows logical necessity as a 'lower' necessity, but denies 'metaphysical' necessity, in line with Hume and other tough empiricists. Personally I adore metaphysical necessities, but they are a bit hard to establish conclusively.
14. Science / A. Basis of Science / 3. Experiment
Science is common sense, with a sophisticated method [Quine]
     Full Idea: Sciences differ from common sense only in the degree of methodological sophistication.
     From: Willard Quine (Natural Kinds [1969], p.129)
     A reaction: Science is normal thinking about the world, but it is teamwork, with the bar set very high.
14. Science / C. Induction / 1. Induction
Induction is just more of the same: animal expectations [Quine]
     Full Idea: Induction is essentially only more of the same: animal expectation or habit formation.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: My working definition of induction is 'learning from experience', but that doesn't disagree with Quine. Lipton has a richer account of different types of induction. Quine's point is that it rests on resemblance.
Induction relies on similar effects following from each cause [Quine]
     Full Idea: Induction expresses our hopes that similar causes will have similar effects.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: Some top philosophers are also top teachers, and Quine was one of them, in his writings. He boils it down for the layman. Once again, he is pointing to the fundamental role of the similarity relation.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Grue is a puzzle because the notions of similarity and kind are dubious in science [Quine]
     Full Idea: What makes Goodman's example a puzzle is the dubious scientific standing of a general notion of similarity, or of kind.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Illuminating. It might be best expressed as revealing a problem with sortal terms, as employed by Geach, or by Wiggins. Grue is a bit silly, but sortals are subject to convention and culture. 'Natural' properties seem needed.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
General terms depend on similarities among things [Quine]
     Full Idea: The usual general term, whether a common noun or a verb or an adjective, owes its generality to some resemblance among the things referred to.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Quine has a nice analysis of the basic role of similarity in a huge amount of supposedly strict scientific thought.
To learn yellow by observation, must we be told to look at the colour? [Quine]
     Full Idea: According to the 'respects' view, our learning of yellow by ostension would have depended on our first having been told or somehow apprised that it was going to be a question of color.
     From: Willard Quine (Natural Kinds [1969], p.122)
     A reaction: Quine suggests there is just one notion of similarity, and respects can be 'abstracted' afterwards. Even the ontologically ruthless Quine admits psychological abstraction!
Standards of similarity are innate, and the spacing of qualities such as colours can be mapped [Quine]
     Full Idea: A standard of similarity is in some sense innate. The spacing of qualities (such as red, pink and blue) can be explored and mapped in the laboratory by experiments. They are needed for all learning.
     From: Willard Quine (Natural Kinds [1969], p.123)
     A reaction: This reasserts Hume's original point in more scientific terms. It is one of the undeniable facts about our perceptions of qualities and properties, no matter how platonist your view of universals may be.
Similarity is just interchangeability in the cosmic machine [Quine]
     Full Idea: Things are similar to the extent that they are interchangeable parts of the cosmic machine.
     From: Willard Quine (Natural Kinds [1969], p.134)
     A reaction: This is a major idea for Quine, because it is a means to gradually eliminate the fuzzy ideas of 'resemblance' or 'similarity' or 'natural kind' from science. I love it! Two tigers are same insofar as they are substitutable.
19. Language / C. Assigning Meanings / 3. Predicates
Projectible predicates can be universalised about the kind to which they refer [Quine]
     Full Idea: 'Projectible' predicates are predicates F and G whose shared instances all do count, for whatever reason, towards confirmation of 'All F are G'. ….A projectible predicate is one that is true of all and only the things of a kind.
     From: Willard Quine (Natural Kinds [1969], p.115-6)
     A reaction: Both Quine and Goodman are infuriatingly brief about the introduction of this concept. 'Red' is true of all ripe tomatoes, but not 'only' of them. Hardly any predicates are true only of one kind. Is that a scholastic 'proprium'?
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Quine probably regrets natural kinds now being treated as essences [Quine, by Dennett]
     Full Idea: The concept of natural kinds was reintroduced by Quine, who may now regret the way it has become a stand-in for the dubious but covertly popular concept of essences.
     From: report of Willard Quine (Natural Kinds [1969]) by Daniel C. Dennett - Consciousness Explained 12.2 n2
     A reaction: He is right that Quine would regret it, and he is right that we can't assume that there are necessary essences just because there seem to be stable natural kinds, but personally I am an essentialist, so I'm not that bothered.
If similarity has no degrees, kinds cannot be contained within one another [Quine]
     Full Idea: If similarity has no degrees there is no containing of kinds within broader kinds. If colored things are a kind, they are similar, but red things are too narrow for a kind. If red things are a kind, colored things are not similar, and it's too broad.
     From: Willard Quine (Natural Kinds [1969], p.118)
     A reaction: [compressed] I'm on Quine's side with this. We glibly talk of 'kinds', but the criteria for sorting things into kinds seems to be a mess. Quine goes on to offer a better account than the (diadic, yes-no) one rejected here.
Comparative similarity allows the kind 'colored' to contain the kind 'red' [Quine]
     Full Idea: With the triadic relation of comparative similarity, kinds can contain one another, as well as overlapping. Red and colored things can both count as kinds. Colored things all resemble one another, even though less than red things do.
     From: Willard Quine (Natural Kinds [1969], p.119)
     A reaction: [compressed] Quine claims that comparative similarity is necessary for kinds - that there be some 'foil' in a similarity - that A is more like C than B is.
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
You can't base kinds just on resemblance, because chains of resemblance are a muddle [Quine]
     Full Idea: If kinds are based on similarity, this has the Imperfect Community problem. Red round, red wooden and round wooden things all resemble one another somehow. There may be nothing outside the set resembling them, so it meets the definition of kind.
     From: Willard Quine (Natural Kinds [1969], p.120)
     A reaction: [ref. to Goodman 'Structure' 2nd 163- , which attacks Carnap on this] This suggests an invocation of Wittgenstein's family resemblance, which won't be much help for natural kinds.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
It is hard to see how regularities could be explained [Quine]
     Full Idea: Why there have been regularities is an obscure question, for it is hard to see what would count as an answer.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: This is the standard pessimism of the 20th century Humeans, but it strikes me as comparable to the pessimism about science found in Locke and Hume. Regularities are explained all the time by scientists, though the lowest level may be hopeless.