Combining Texts

All the ideas for 'The Evolution of Logic', 'Cours d'Analyse' and 'Frege philosophy of mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


74 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
     Full Idea: We are all post-Kantians, ...because Kant set an agenda for philosophy that we are still working through.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Hart says that the main agenda is set by Kant's desire to defend the principle of sufficient reason against Hume's attack on causation. I would take it more generally to be the assessment of metaphysics, and of a priori knowledge.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
     Full Idea: The real monuments of philosophy are its problems.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Presumably he means '....rather than its solutions'. No other subject would be very happy with that sort of claim. Compare Idea 8243. A complaint against analytic philosophy is that it has achieved no consensus at all.
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
     Full Idea: By now, no education in abstract pursuits is adequate without some familiarity with sets.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: A heart-sinking observation for those who aspire to study metaphysics and modality. The question is, what will count as 'some' familiarity? Are only professional logicians now allowed to be proper philosophers?
2. Reason / D. Definition / 7. Contextual Definition
A contextual definition permits the elimination of the expression by a substitution [Dummett]
     Full Idea: The standard sense of a 'contextual definition' permits the eliminating of the defined expression, by transforming any sentence containing it into an equivalent one not containing it.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.11)
     A reaction: So the whole definition might be eliminated by a single word, which is not equivalent to the target word, which is embedded in the original expression. Clearly contextual definitions have some problems
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
     Full Idea: It is an ancient and honourable view that truth is correspondence to fact; Tarski showed us how to do without facts here.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This is a very interesting spin on Tarski, who certainly seems to endorse the correspondence theory, even while apparently inventing a new 'semantic' theory of truth. It is controversial how far Tarski's theory really is a 'correspondence' theory.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
     Full Idea: We explain truth for sentences in terms of satisfaction of formulae. The crux here is that for a sentence, either all sequences satisfy it or none do (with no middle ground). For formulae, some sequences may satisfy it and others not.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This is the hardest part of Tarski's theory of truth to grasp.
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
     Full Idea: In any first-order language, there are infinitely many T-sentences. Since definitions should be finite, the agglomeration of all the T-sentences is not a definition of truth.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This may be a warning shot aimed at Davidson's extensive use of Tarski's formal account in his own views on meaning in natural language.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
     Full Idea: A 'conditional proof' licenses inferences to a conditional from a deduction of its consequent from its antecedent.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: That is, a proof can be enshrined in an arrow.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
     Full Idea: When a quantifier is attached to a variable, as in '∃(y)....', then it should be read as 'There exists an individual, call it y, such that....'. One should not read it as 'There exists a y such that...', which would attach predicate to quantifier.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: The point is to make clear that in classical logic the predicates attach to the objects, and not to some formal component like a quantifier.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
     Full Idea: It is set theory, and more specifically the theory of relations, that articulates order.
     From: William D. Hart (The Evolution of Logic [2010])
     A reaction: It would seem that we mainly need set theory in order to talk accurately about order, and about infinity. The two come together in the study of the ordinal numbers.
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
     Full Idea: The theory of types is a thing of the past. There is now nothing to choose between ZFC and NBG (Neumann-Bernays-Gödel). NF (Quine's) is a more specialized taste, but is a place to look if you want the universe.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
     Full Idea: ∈ relates across layers (Plato is a member of his unit set and the set of people), while ⊆ relates within layers (the singleton of Plato is a subset of the set of people). This distinction only became clear in the 19th century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: Getting these two clear may be the most important distinction needed to understand how set theory works.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
     Full Idea: Without the empty set, disjoint sets would have no intersection, and we could not form a∩b without checking that a and b meet. This is an example of the utility of the empty set.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: A novice might plausibly ask why there should be an intersection for every pair of sets, if they have nothing in common except for containing this little puff of nothingness. But then what do novices know?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
     Full Idea: In the second half of the twentieth century there emerged the opinion that foundation is the heart of the way to do set theory.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: It is foundation which is the central axiom of the iterative conception of sets, where each level of sets is built on previous levels, and they are all 'well-founded'.
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
     Full Idea: The usual statement of Foundation is that any nonempty set has a member disjoint from it. This phrasing is ordinal-free and closer to the primitives of ZFC.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
     Full Idea: When a set is finite, we can prove it has a choice function (∀x x∈A → f(x)∈A), but we need an axiom when A is infinite and the members opaque. From infinite shoes we can pick a left one, but from socks we need the axiom of choice.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The socks example in from Russell 1919:126.
With the Axiom of Choice every set can be well-ordered [Hart,WD]
     Full Idea: It follows from the Axiom of Choice that every set can be well-ordered.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: For 'well-ordered' see Idea 13460. Every set can be ordered with a least member.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
     Full Idea: It has been said (by Burt Dreben) that the only reason set theorists do not generally buy the view that V = L is that it would put them out of business by settling their open questions.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: Hart says V=L breaks with the interative conception of sets at level ω+1, which is countable is the constructible view, but has continuum many in the cumulative (iterative) hierarch. The constructible V=L view is anti-platonist.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
     Full Idea: 'Comprehension' is the assumption that every predicate has an extension. Naïve set theory is the theory whose axioms are extensionality and comprehension, and comprehension is thought to be its naivety.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: This doesn't, of course, mean that there couldn't be a more modest version of comprehension. The notorious difficulty come with the discovery of self-referring predicates which can't possibly have extensions.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
     Full Idea: That the iterative sets suffice for most of ZFC does not show they are necessary, nor is it evident that the set of operations has no fixed points (as 0 is a fixed point for square-of), and no infinitely descending chains (like negative integers).
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: People don't seem to worry that they aren't 'necessary', and further measures are possible to block infinitely descending chains.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
     Full Idea: We say that a binary relation R 'partially orders' a field A just in case R is irreflexive (so that nothing bears R to itself) and transitive. When the set is {a,b}, its subsets {a} and {b} are incomparable in a partial ordering.
     From: William D. Hart (The Evolution of Logic [2010], 1)
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
     Full Idea: A partial ordering is a 'total ordering' just in case any two members of its field are comparable, that is, either a is R to b, or b is R to a, or a is b.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: See Idea 13457 for 'partial ordering'. The three conditions are known as the 'trichotomy' condition.
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
     Full Idea: A total order 'well-orders' its field just in case any nonempty subset B of its field has an R-least member, that is, there is a b in B such that for any a in B different from b, b bears R to a. So less-than well-orders natural numbers, but not integers.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The natural numbers have a starting point, but the integers are infinite in both directions. In plain English, an order is 'well-ordered' if there is a starting point.
Von Neumann defines α<β as α∈β [Hart,WD]
     Full Idea: One of the glories of Von Neumann's theory of numbers is to define α < β to mean that α ∈ β.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
     Full Idea: Some have claimed that sets should be rethought in terms of still more basic things, categories.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: [He cites F.William Lawvere 1966] It appears to the the context of foundations for mathematics that he has in mind.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
In classical logic, logical truths are valid formulas; in higher-order logics they are purely logical [Dummett]
     Full Idea: For sentential or first-order logic, the logical truths are represented by valid formulas; in higher-order logics, by sentences formulated in purely logical terms.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 3)
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
     Full Idea: All the main set theories deny that there is a set of which everything is a member. No interpretation has a domain with everything in it. So the universal quantifier never gets to mean everything all at once; 'all' does not mean all.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: Could you have an 'uncompleted' universal set, in the spirit of uncompleted infinities? In ordinary English we can talk about 'absolutely everything' - we just can't define a set of everything. Must we 'define' our domain?
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
     Full Idea: The beginning of modern model theory was when Morley proved Los's Conjecture in 1962 - that a complete theory in a countable language categorical in one uncountable cardinal is categorical in all.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Model theory studies how set theory can model sets of sentences [Hart,WD]
     Full Idea: Modern model theory investigates which set theoretic structures are models for which collections of sentences.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: So first you must choose your set theory (see Idea 13497). Then you presumably look at how to formalise sentences, and then look at the really tricky ones, many of which will involve various degrees of infinity.
Model theory is mostly confined to first-order theories [Hart,WD]
     Full Idea: There is no developed methematics of models for second-order theories, so for the most part, model theory is about models for first-order theories.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Models are ways the world might be from a first-order point of view [Hart,WD]
     Full Idea: Models are ways the world might be from a first-order point of view.
     From: William D. Hart (The Evolution of Logic [2010], 9)
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
     Full Idea: First-order logic is 'compact', which means that any logical consequence of a set (finite or infinite) of first-order sentences is a logical consequence of a finite subset of those sentences.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
     Full Idea: Berry's Paradox: by the least number principle 'the least number denoted by no description of fewer than 79 letters' exists, but we just referred to it using a description of 77 letters.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: I struggle with this. If I refer to 'an object to which no human being could possibly refer', have I just referred to something? Graham Priest likes this sort of idea.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
     Full Idea: The Burali-Forti Paradox was a crisis for Cantor's theory of ordinal numbers.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
     Full Idea: In effect, the machinery introduced to solve the liar can always be rejigged to yield another version the liar.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: [He cites Hans Herzberger 1980-81] The machinery is Tarski's device of only talking about sentences of a language by using a 'metalanguage'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
A prime number is one which is measured by a unit alone [Dummett]
     Full Idea: A prime number is one which is measured by a unit alone.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 11)
     A reaction: We might say that the only way of 'reaching' or 'constructing' a prime is by incrementing by one till you reach it. That seems a pretty good definition. 64, for example, can be reached by a large number of different routes.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Addition of quantities is prior to ordering, as shown in cyclic domains like angles [Dummett]
     Full Idea: It is essential to a quantitative domain of any kind that there should be an operation of adding its elements; that this is more fundamental thaat that they should be linearly ordered by magnitude is apparent from cyclic domains like that of angles.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 22 'Quantit')
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
     Full Idea: The axiom of infinity with separation yields a least limit ordinal, which is called ω.
     From: William D. Hart (The Evolution of Logic [2010], 3)
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
     Full Idea: We can show (using the axiom of choice) that the less-than relation, <, well-orders the ordinals, ...and that it partially orders the ordinals, ...and that it totally orders the ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
     Full Idea: Since we can map the transfinite ordinals one-one into the infinite cardinals, there are at least as many infinite cardinals as transfinite ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
     Full Idea: It is easier to generalize von Neumann's finite ordinals into the transfinite. All Zermelo's nonzero finite ordinals are singletons, but if ω were a singleton it is hard to see how if could fail to be the successor of its member and so not a limit.
     From: William D. Hart (The Evolution of Logic [2010], 3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
     Full Idea: The real numbers were not isolated from geometry until the arithmetization of analysis during the nineteenth century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A number is a multitude composed of units [Dummett]
     Full Idea: A number is a multitude composed of units.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 2)
     A reaction: This is outdated by the assumption that 0 and 1 are also numbers, but if we say one is really just the 'unit' which is preliminary to numbers, and 0 is as bogus a number as i is, we might stick with the original Greek distinction.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
We understand 'there are as many nuts as apples' as easily by pairing them as by counting them [Dummett]
     Full Idea: A child understands 'there are just as many nuts as apples' as easily by pairing them off as by counting them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: I find it very intriguing that you could know that two sets have the same number, without knowing any numbers. Is it like knowing two foreigners spoke the same words, without understanding them? Or is 'equinumerous' conceptually prior to 'number'?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
     Full Idea: Mathematical induction is a way to establish truths about the infinity of natural numbers by a finite proof.
     From: William D. Hart (The Evolution of Logic [2010], 5)
     A reaction: If there are truths about infinities, it is very tempting to infer that the infinities must therefore 'exist'. A nice, and large, question in philosophy is whether there can be truths without corresponding implications of existence.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Values that approach zero, becoming less than any quantity, are 'infinitesimals' [Cauchy]
     Full Idea: When the successive absolute values of a variable decrease indefinitely in such a way as to become less than any given quantity, that variable becomes what is called an 'infinitesimal'. Such a variable has zero as its limit.
     From: Augustin-Louis Cauchy (Cours d'Analyse [1821], p.19), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.4
     A reaction: The creator of the important idea of the limit still talked in terms of infinitesimals. In the next generation the limit took over completely.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
When successive variable values approach a fixed value, that is its 'limit' [Cauchy]
     Full Idea: When the values successively attributed to the same variable approach indefinitely a fixed value, eventually differing from it by as little as one could wish, that fixed value is called the 'limit' of all the others.
     From: Augustin-Louis Cauchy (Cours d'Analyse [1821], p.19), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.4
     A reaction: This seems to be a highly significan proposal, because you can now treat that limit as a number, and adds things to it. It opens the door to Cantor's infinities. Is the 'limit' just a fiction?
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
     Full Idea: There is a familiar comparison between Euclid (unique parallel) and 'spherical' geometry (no parallel) and 'saddle' geometry (several parallels).
     From: William D. Hart (The Evolution of Logic [2010], 2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The identity of a number may be fixed by something outside structure - by counting [Dummett]
     Full Idea: The identity of a mathematical object may sometimes be fixed by its relation to what lies outside the structure to which it belongs. It is more fundamental to '3' that if certain objects are counted, there are three of them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This strikes me as Dummett being pushed (by his dislike of the purely abstract picture given by structuralism) back to a rather empiricist and physical view of numbers, though he would totally deny that.
Numbers aren't fixed by position in a structure; it won't tell you whether to start with 0 or 1 [Dummett]
     Full Idea: The number 0 is not differentiated from 1 by its position in a progression, otherwise there would be no difference between starting with 0 and starting with 1. That is enough to show that numbers are not identifiable just as positions in structures.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This sounds conclusive, but doesn't feel right. If numbers are a structure, then where you 'start' seems unimportant. Where do you 'start' in St Paul's Cathedral? Starting sounds like a constructivist concept for number theory.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Set theory isn't part of logic, and why reduce to something more complex? [Dummett]
     Full Idea: The two frequent modern objects to logicism are that set theory is not part of logic, or that it is of no interest to 'reduce' a mathematical theory to another, more complex, one.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: Dummett says these are irrelevant (see context). The first one seems a good objection. The second one less so, because whether something is 'complex' is a quite different issue from whether it is ontologically more fundamental.
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
     Full Idea: The thesis that no existence proposition is analytic is one of the few constants in philosophical consciences, but there are many existence claims in mathematics, such as the infinity of primes, five regular solids, and certain undecidable propositions.
     From: William D. Hart (The Evolution of Logic [2010], 2)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The distinction of concrete/abstract, or actual/non-actual, is a scale, not a dichotomy [Dummett]
     Full Idea: The distinction between concrete and abstract objects, or Frege's corresponding distinction between actual and non-actual objects, is not a sharp dichotomy, but resembles a scale upon which objects occupy a range of positions.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: This might seem right if you live (as Dummett chooses to) in the fog of language, but it surely can't be right if you think about reality. Is the Equator supposed to be near the middle of his scale? Either there is an equator, or there isn't.
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
     Full Idea: Jespersen calls a noun a mass word when it has no plural, does not take numerical adjectives, and does not take 'fewer'.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: Jespersen was a great linguistics expert.
7. Existence / D. Theories of Reality / 2. Realism
Realism is just the application of two-valued semantics to sentences [Dummett]
     Full Idea: Fully fledged realism depends on - indeed, may be identified with - an undiluted application to sentences of the relevant kind of straightforwards two-valued semantics.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: This is the sort of account you get from a whole-heartedly linguistic philosopher. Personally I would say that Dummett has got it precisely the wrong way round: I adopt a two-valued semantics because my metaphysics is realist.
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Nominalism assumes unmediated mental contact with objects [Dummett]
     Full Idea: The nominalist superstition is based ultimately on the myth of the unmediated presentation of genuine concrete objects to the mind.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: Personally I am inclined to favour nominalism and a representative theory of perception, which acknowledges some 'mediation', but of a non-linguistic form. Any good theory here had better include animals, which seem to form concepts.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
The existence of abstract objects is a pseudo-problem [Dummett]
     Full Idea: The existence of abstract objects is a pseudo-problem.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: This remark follows after Idea 9884, which says the abstract/concrete distinction is a sliding scale. Personally I take the distinction to be fairly sharp, and it is therefore probably the single most important problem in the whole of human thought.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Abstract objects nowadays are those which are objective but not actual [Dummett]
     Full Idea: Objects which are objective but not actual are precisely what are now called abstract objects.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: Why can there not be subjective abstract objects? 'My favourites are x, y and z'. 'I'll decide later what my favourites are'. 'I only buy my favourites - nothing else'.
It is absurd to deny the Equator, on the grounds that it lacks causal powers [Dummett]
     Full Idea: If someone argued that assuming the existence of the Equator explains nothing, and it has no causal powers, so everything would be the same if it didn't exist, so we needn't accept its existence, we should gape at the crudity of the misunderstanding.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: Not me. I would gape if someone argued that latitude 55° 14' (and an infinity of other lines) exists for the same reasons (whatever they may be) that the Equator exists. A mode of description can't create an object.
'We've crossed the Equator' has truth-conditions, so accept the Equator - and it's an object [Dummett]
     Full Idea: 'We've crossed the Equator' is judged true if we are nearer the other Pole, so it not for philosophers to deny that the Earth has an equator, and we see that the Equator is not a concept or relation or function, so it must be classified as an object.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: A lovely example of linguistic philosophy in action (and so much the worse for that, I would say). A useful label here, I suggest (unoriginally, I think), is that we should label such an item a 'semantic object', rather than a real object in our ontology.
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
Abstract objects need the context principle, since they can't be encountered directly [Dummett]
     Full Idea: To recognise that there is no objection in principle to abstract objects requires acknowledgement that some form of the context principle is correct, since abstract objects can neither be encountered nor presented.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.16)
     A reaction: I take this to be an immensely important idea. I consider myself to be a philosopher of thought rather than a philosopher of language (Dummett's distinction, he being one of the latter). Thought connects to the world, but does it connect to abstracta?
9. Objects / F. Identity among Objects / 2. Defining Identity
Content is replaceable if identical, so replaceability can't define identity [Dummett, by Dummett]
     Full Idea: Husserl says the only ground for assuming the replaceability of one content by another is their identity; we are therefore not entitled to define their identity as consisting in their replaceability.
     From: report of Michael Dummett (Frege philosophy of mathematics [1991]) by Michael Dummett - Frege philosophy of mathematics Ch.12
     A reaction: This is a direct challenge to Frege. Tricky to arbitrate, as it is an issue of conceptual priority. My intuition is with Husserl, but maybe the two are just benignly inerdefinable.
Frege introduced criteria for identity, but thought defining identity was circular [Dummett]
     Full Idea: In his middle period Frege rated identity indefinable, on the ground that every definition must take the form of an identity-statement. Frege introduced the notion of criterion of identity, which has been widely used by analytical philosophers.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.10)
     A reaction: The objection that attempts to define identity would be circular sounds quite plausible. It sounds right to seek a criterion for type-identity (in shared properties or predicates), but token-identity looks too fundamental to give clear criteria.
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
     Full Idea: The conception of Frege is that self-evidence is an intrinsic property of the basic truths, rules, and thoughts expressed by definitions.
     From: William D. Hart (The Evolution of Logic [2010], p.350)
     A reaction: The problem is always that what appears to be self-evident may turn out to be wrong. Presumably the effort of arriving at a definition ought to clarify and support the self-evident ingredient.
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
     Full Idea: In the case of the parallels postulate, Euclid's fifth axiom (the whole is greater than the part), and comprehension, saying was believing for a while, but what was said was false. This should make a shrewd philosopher sceptical about a priori knowledge.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Euclid's fifth is challenged by infinite numbers, and comprehension is challenged by Russell's paradox. I can't see a defender of the a priori being greatly worried about these cases. No one ever said we would be right - in doing arithmetic, for example.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]
     Full Idea: A Fregean concept is a function that assigns to each object a truth value. So instead of the colour green, the concept GREEN assigns truth to each green thing, but falsity to anything else.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This would seem to immediately hit the renate/cordate problem, if there was a world in which all and only the green things happened to be square. How could Frege then distinguish the green from the square? Compare Idea 8245.
18. Thought / D. Concepts / 4. Structure of Concepts / i. Conceptual priority
Maybe a concept is 'prior' to another if it can be defined without the second concept [Dummett]
     Full Idea: One powerful argument for a thesis that one notion is conceptually prior to another is the possibility of defining the first without reference to the second.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: You'd better check whether you can't also define the second without reference to the first before you rank their priority. And maybe 'conceptual priority' is conceptually prior to 'definition' (i.e. definition needs a knowledge of priority). Help!
An argument for conceptual priority is greater simplicity in explanation [Dummett]
     Full Idea: An argument for conceptual priority is greater simplicity in explanation.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: One might still have to decide priority between two equally simple (or complex) concepts. I begin to wonder whether 'priority' has any other than an instrumental meaning (according to which direction you wish to travel - is London before Edinburgh?).
18. Thought / E. Abstraction / 1. Abstract Thought
Abstract terms are acceptable as long as we know how they function linguistically [Dummett]
     Full Idea: To recognise abstract terms as perfectly proper items of a vocabulary depends upon allowing that all that is necessary for the lawful introduction of a range of expressions into the language is a coherent account of how they are to function in sentences.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.16)
     A reaction: Why can't the 'coherent account' of the sentences include the fact that there must be something there for the terms to refer to? How else are we to eliminate nonsense words which obey good syntactical rules? Cf. Idea 9872.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
There is no reason why abstraction by equivalence classes should be called 'logical' [Dummett, by Tait]
     Full Idea: Dummett uses the term 'logical abstraction' for the construction of the abstract objects as equivalence classes, but it is not clear why we should call this construction 'logical'.
     From: report of Michael Dummett (Frege philosophy of mathematics [1991]) by William W. Tait - Frege versus Cantor and Dedekind n 14
     A reaction: This is a good objection, and Tait offers a much better notion of 'logical abstraction' (as involving preconditions for successful inference), in Idea 9981.
We arrive at the concept 'suicide' by comparing 'Cato killed Cato' with 'Brutus killed Brutus' [Dummett]
     Full Idea: We arrive at the concept of suicide by considering both occurrences in the sentence 'Cato killed Cato' of the proper name 'Cato' as simultaneously replaceable by another name, say 'Brutus', and so apprehending the pattern common to both sentences.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.14)
     A reaction: This is intended to illustrate Frege's 'logical abstraction' technique, as opposed to wicked psychological abstraction. The concept of suicide is the pattern 'x killed x'. This is a crucial example if we are to understand abstraction...
18. Thought / E. Abstraction / 8. Abstractionism Critique
To abstract from spoons (to get the same number as the forks), the spoons must be indistinguishable too [Dummett]
     Full Idea: To get units by abstraction, units arrived at by abstraction from forks must the identical to that abstracted from spoons, with no trace of individuality. But if spoons can no longer be differentiated from forks, they can't differ from one another either.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 8)
     A reaction: [compressed] Dummett makes the point better than Frege did. Can we 'think of a fork insofar as it is countable, ignoring its other features'? What are we left thinking of? Frege says it must still be the whole fork. 'Nice fork, apart from the colour'.
19. Language / C. Assigning Meanings / 5. Fregean Semantics
Fregean semantics assumes a domain articulated into individual objects [Dummett]
     Full Idea: A Fregean semantics assumes a domain already determinately articulated into individual objects.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 8)
     A reaction: A more interesting criticism than most of Dummett's other challenges to the Frege/Davidson view. I am beginning to doubt whether the semantics and the ontology can ever be divorced from the psychology, of thought, interests, focus etc.
27. Natural Reality / C. Space / 3. Points in Space
Why should the limit of measurement be points, not intervals? [Dummett]
     Full Idea: By what right do we assume that the limit of measurement is a point, and not an interval?
     From: Michael Dummett (Frege philosophy of mathematics [1991], 22 'Quantit')