Combining Texts

All the ideas for 'The Evolution of Logic', 'Intensional Logic' and 'The Reasons of Love'

unexpand these ideas     |    start again     |     specify just one area for these texts


68 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
     Full Idea: We are all post-Kantians, ...because Kant set an agenda for philosophy that we are still working through.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Hart says that the main agenda is set by Kant's desire to defend the principle of sufficient reason against Hume's attack on causation. I would take it more generally to be the assessment of metaphysics, and of a priori knowledge.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
     Full Idea: The real monuments of philosophy are its problems.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Presumably he means '....rather than its solutions'. No other subject would be very happy with that sort of claim. Compare Idea 8243. A complaint against analytic philosophy is that it has achieved no consensus at all.
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
     Full Idea: By now, no education in abstract pursuits is adequate without some familiarity with sets.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: A heart-sinking observation for those who aspire to study metaphysics and modality. The question is, what will count as 'some' familiarity? Are only professional logicians now allowed to be proper philosophers?
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
     Full Idea: It is an ancient and honourable view that truth is correspondence to fact; Tarski showed us how to do without facts here.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This is a very interesting spin on Tarski, who certainly seems to endorse the correspondence theory, even while apparently inventing a new 'semantic' theory of truth. It is controversial how far Tarski's theory really is a 'correspondence' theory.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
     Full Idea: We explain truth for sentences in terms of satisfaction of formulae. The crux here is that for a sentence, either all sequences satisfy it or none do (with no middle ground). For formulae, some sequences may satisfy it and others not.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This is the hardest part of Tarski's theory of truth to grasp.
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
     Full Idea: In any first-order language, there are infinitely many T-sentences. Since definitions should be finite, the agglomeration of all the T-sentences is not a definition of truth.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This may be a warning shot aimed at Davidson's extensive use of Tarski's formal account in his own views on meaning in natural language.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
     Full Idea: A 'conditional proof' licenses inferences to a conditional from a deduction of its consequent from its antecedent.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: That is, a proof can be enshrined in an arrow.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
     Full Idea: When a quantifier is attached to a variable, as in '∃(y)....', then it should be read as 'There exists an individual, call it y, such that....'. One should not read it as 'There exists a y such that...', which would attach predicate to quantifier.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: The point is to make clear that in classical logic the predicates attach to the objects, and not to some formal component like a quantifier.
4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
     Full Idea: It is set theory, and more specifically the theory of relations, that articulates order.
     From: William D. Hart (The Evolution of Logic [2010])
     A reaction: It would seem that we mainly need set theory in order to talk accurately about order, and about infinity. The two come together in the study of the ordinal numbers.
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
     Full Idea: The theory of types is a thing of the past. There is now nothing to choose between ZFC and NBG (Neumann-Bernays-Gödel). NF (Quine's) is a more specialized taste, but is a place to look if you want the universe.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
     Full Idea: ∈ relates across layers (Plato is a member of his unit set and the set of people), while ⊆ relates within layers (the singleton of Plato is a subset of the set of people). This distinction only became clear in the 19th century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: Getting these two clear may be the most important distinction needed to understand how set theory works.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
     Full Idea: Without the empty set, disjoint sets would have no intersection, and we could not form a∩b without checking that a and b meet. This is an example of the utility of the empty set.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: A novice might plausibly ask why there should be an intersection for every pair of sets, if they have nothing in common except for containing this little puff of nothingness. But then what do novices know?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
     Full Idea: In the second half of the twentieth century there emerged the opinion that foundation is the heart of the way to do set theory.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: It is foundation which is the central axiom of the iterative conception of sets, where each level of sets is built on previous levels, and they are all 'well-founded'.
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
     Full Idea: The usual statement of Foundation is that any nonempty set has a member disjoint from it. This phrasing is ordinal-free and closer to the primitives of ZFC.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
     Full Idea: When a set is finite, we can prove it has a choice function (∀x x∈A → f(x)∈A), but we need an axiom when A is infinite and the members opaque. From infinite shoes we can pick a left one, but from socks we need the axiom of choice.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The socks example in from Russell 1919:126.
With the Axiom of Choice every set can be well-ordered [Hart,WD]
     Full Idea: It follows from the Axiom of Choice that every set can be well-ordered.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: For 'well-ordered' see Idea 13460. Every set can be ordered with a least member.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
     Full Idea: It has been said (by Burt Dreben) that the only reason set theorists do not generally buy the view that V = L is that it would put them out of business by settling their open questions.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: Hart says V=L breaks with the interative conception of sets at level ω+1, which is countable is the constructible view, but has continuum many in the cumulative (iterative) hierarch. The constructible V=L view is anti-platonist.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
     Full Idea: 'Comprehension' is the assumption that every predicate has an extension. Naïve set theory is the theory whose axioms are extensionality and comprehension, and comprehension is thought to be its naivety.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: This doesn't, of course, mean that there couldn't be a more modest version of comprehension. The notorious difficulty come with the discovery of self-referring predicates which can't possibly have extensions.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
     Full Idea: That the iterative sets suffice for most of ZFC does not show they are necessary, nor is it evident that the set of operations has no fixed points (as 0 is a fixed point for square-of), and no infinitely descending chains (like negative integers).
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: People don't seem to worry that they aren't 'necessary', and further measures are possible to block infinitely descending chains.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
     Full Idea: We say that a binary relation R 'partially orders' a field A just in case R is irreflexive (so that nothing bears R to itself) and transitive. When the set is {a,b}, its subsets {a} and {b} are incomparable in a partial ordering.
     From: William D. Hart (The Evolution of Logic [2010], 1)
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
     Full Idea: A partial ordering is a 'total ordering' just in case any two members of its field are comparable, that is, either a is R to b, or b is R to a, or a is b.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: See Idea 13457 for 'partial ordering'. The three conditions are known as the 'trichotomy' condition.
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
     Full Idea: A total order 'well-orders' its field just in case any nonempty subset B of its field has an R-least member, that is, there is a b in B such that for any a in B different from b, b bears R to a. So less-than well-orders natural numbers, but not integers.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The natural numbers have a starting point, but the integers are infinite in both directions. In plain English, an order is 'well-ordered' if there is a starting point.
Von Neumann defines α<β as α∈β [Hart,WD]
     Full Idea: One of the glories of Von Neumann's theory of numbers is to define α < β to mean that α ∈ β.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
     Full Idea: Some have claimed that sets should be rethought in terms of still more basic things, categories.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: [He cites F.William Lawvere 1966] It appears to the the context of foundations for mathematics that he has in mind.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
     Full Idea: All the main set theories deny that there is a set of which everything is a member. No interpretation has a domain with everything in it. So the universal quantifier never gets to mean everything all at once; 'all' does not mean all.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: Could you have an 'uncompleted' universal set, in the spirit of uncompleted infinities? In ordinary English we can talk about 'absolutely everything' - we just can't define a set of everything. Must we 'define' our domain?
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
     Full Idea: The beginning of modern model theory was when Morley proved Los's Conjecture in 1962 - that a complete theory in a countable language categorical in one uncountable cardinal is categorical in all.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Model theory studies how set theory can model sets of sentences [Hart,WD]
     Full Idea: Modern model theory investigates which set theoretic structures are models for which collections of sentences.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: So first you must choose your set theory (see Idea 13497). Then you presumably look at how to formalise sentences, and then look at the really tricky ones, many of which will involve various degrees of infinity.
Model theory is mostly confined to first-order theories [Hart,WD]
     Full Idea: There is no developed methematics of models for second-order theories, so for the most part, model theory is about models for first-order theories.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Models are ways the world might be from a first-order point of view [Hart,WD]
     Full Idea: Models are ways the world might be from a first-order point of view.
     From: William D. Hart (The Evolution of Logic [2010], 9)
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
     Full Idea: First-order logic is 'compact', which means that any logical consequence of a set (finite or infinite) of first-order sentences is a logical consequence of a finite subset of those sentences.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
     Full Idea: Berry's Paradox: by the least number principle 'the least number denoted by no description of fewer than 79 letters' exists, but we just referred to it using a description of 77 letters.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: I struggle with this. If I refer to 'an object to which no human being could possibly refer', have I just referred to something? Graham Priest likes this sort of idea.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
     Full Idea: The Burali-Forti Paradox was a crisis for Cantor's theory of ordinal numbers.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
     Full Idea: In effect, the machinery introduced to solve the liar can always be rejigged to yield another version the liar.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: [He cites Hans Herzberger 1980-81] The machinery is Tarski's device of only talking about sentences of a language by using a 'metalanguage'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
     Full Idea: We can show (using the axiom of choice) that the less-than relation, <, well-orders the ordinals, ...and that it partially orders the ordinals, ...and that it totally orders the ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
     Full Idea: The axiom of infinity with separation yields a least limit ordinal, which is called ω.
     From: William D. Hart (The Evolution of Logic [2010], 3)
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
     Full Idea: Since we can map the transfinite ordinals one-one into the infinite cardinals, there are at least as many infinite cardinals as transfinite ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
     Full Idea: It is easier to generalize von Neumann's finite ordinals into the transfinite. All Zermelo's nonzero finite ordinals are singletons, but if ω were a singleton it is hard to see how if could fail to be the successor of its member and so not a limit.
     From: William D. Hart (The Evolution of Logic [2010], 3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
     Full Idea: The real numbers were not isolated from geometry until the arithmetization of analysis during the nineteenth century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
     Full Idea: Mathematical induction is a way to establish truths about the infinity of natural numbers by a finite proof.
     From: William D. Hart (The Evolution of Logic [2010], 5)
     A reaction: If there are truths about infinities, it is very tempting to infer that the infinities must therefore 'exist'. A nice, and large, question in philosophy is whether there can be truths without corresponding implications of existence.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
     Full Idea: There is a familiar comparison between Euclid (unique parallel) and 'spherical' geometry (no parallel) and 'saddle' geometry (several parallels).
     From: William D. Hart (The Evolution of Logic [2010], 2)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
     Full Idea: The thesis that no existence proposition is analytic is one of the few constants in philosophical consciences, but there are many existence claims in mathematics, such as the infinity of primes, five regular solids, and certain undecidable propositions.
     From: William D. Hart (The Evolution of Logic [2010], 2)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
     Full Idea: Jespersen calls a noun a mass word when it has no plural, does not take numerical adjectives, and does not take 'fewer'.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: Jespersen was a great linguistics expert.
10. Modality / A. Necessity / 9. Normative Necessity
Love creates a necessity concerning what to care about [Frankfurt]
     Full Idea: The necessity with which love binds the will puts an end to indecisiveness concerning what to care about.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 2.13)
     A reaction: I put this here as a reminder that there may be more to necessity than the dry concept of metaphysicians and logicians. 'Why did you rescue that man first?' 'Because I love him'. Kit Fine recognises many sorts of necessity.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
     Full Idea: The conception of Frege is that self-evidence is an intrinsic property of the basic truths, rules, and thoughts expressed by definitions.
     From: William D. Hart (The Evolution of Logic [2010], p.350)
     A reaction: The problem is always that what appears to be self-evident may turn out to be wrong. Presumably the effort of arriving at a definition ought to clarify and support the self-evident ingredient.
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
     Full Idea: In the case of the parallels postulate, Euclid's fifth axiom (the whole is greater than the part), and comprehension, saying was believing for a while, but what was said was false. This should make a shrewd philosopher sceptical about a priori knowledge.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Euclid's fifth is challenged by infinite numbers, and comprehension is challenged by Russell's paradox. I can't see a defender of the a priori being greatly worried about these cases. No one ever said we would be right - in doing arithmetic, for example.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]
     Full Idea: A Fregean concept is a function that assigns to each object a truth value. So instead of the colour green, the concept GREEN assigns truth to each green thing, but falsity to anything else.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This would seem to immediately hit the renate/cordate problem, if there was a world in which all and only the green things happened to be square. How could Frege then distinguish the green from the square? Compare Idea 8245.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / d. Ethical theory
Ranking order of desires reveals nothing, because none of them may be considered important [Frankfurt]
     Full Idea: Ranking desires in order of preference is no help, because a person who wants one thing more than another may not regard the former as any more important to him than the latter.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 1.5)
     A reaction: A salutary warning. Someone may pursue something with incredible intensity, but only to stave off a boring and empty existence. The only way I can think of to assess what really matters to people is - to ask them!
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / b. Rational ethics
Morality isn't based on reason; moral indignation is quite unlike disapproval of irrationality [Frankfurt]
     Full Idea: The ultimate warrant for moral principles cannot be found in reason. The sort of opprobrium that attaches to moral transgressions is quite unlike the sort of opprobrium that attaches to the requirements of reason.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 2.5 n6)
     A reaction: More like a piece of evidence than a proper argument. We may not feel indignant if someone fails a maths exam, but we might if they mess up the arithmetic of our bank account, even though they meant well.
22. Metaethics / B. Value / 1. Nature of Value / d. Subjective value
It is by caring about things that we infuse the world with importance [Frankfurt]
     Full Idea: It is by caring about things that we infuse the world with importance.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 1.10)
     A reaction: This book is a lovely attempt at getting to the heart of where values come from. 'Football isn't a matter of life and death; it's more important than that' - Bill Shankly (manager of Liverpool). Frankfurt is right.
If you don't care about at least one thing, you can't find reasons to care about anything [Frankfurt]
     Full Idea: It is not possible for a person who does not already care at least about something to discover reasons for caring about anything.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 1.11)
     A reaction: This is the key idea of this lovely book. Without a glimmer of love somewhere, it is not possible to bootstrap a meaningful life. The glimmer of caring about one thing is transferable. See the Ancient Mariner and the watersnake.
22. Metaethics / B. Value / 1. Nature of Value / f. Ultimate value
What is worthwhile for its own sake alone may be worth very little [Frankfurt]
     Full Idea: What is worth having or worth doing for its own sake alone may nonetheless be worth very little.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 1.5)
     A reaction: That is one of my cherished notions sunk without trace! Aristotle's idea that ends are what matter, not means, always struck me as crucial. But Frankfurt is right. Collecting trivia is done for its own sake. Great tasks are performed as a means.
Our criteria for evaluating how to live offer an answer to the problem [Frankfurt]
     Full Idea: Identifying the criteria to be employed in evaluating various ways of living is also tantamount to providing an answer to the question of how to live.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 1.10)
     A reaction: Presumably critical reflection is still possible about those criteria, even though he implies that they just arise out of you (in a rather Nietzschean way). The fear is that critical reflection on basic criteria kills in infant in its cradle.
22. Metaethics / B. Value / 2. Values / g. Love
Rather than loving things because we value them, I think we value things because we love them [Frankfurt]
     Full Idea: It is often understood that we begin loving things because we are struck by their value. ..However, what I have in mind is rather that what we love necessarily acquires value for us because we love it.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 2.3)
     A reaction: The uneasy thought here is that this makes value much less rational. If you love because you value, you could probably give reasons for the value. If love comes first it must be instinctive. He says he loved his children before they were born.
Love can be cool, and it may not involve liking its object [Frankfurt]
     Full Idea: It is not among the defining features of love that it must be hot rather than cool, ..and nor is it essential that a person like what he loves.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 2.4)
     A reaction: An interesting pair of observations. The greatness of love would probably be measured by length, or by sacrifice. Extreme heat makes us a little suspicious. It would be hard to love something that was actually disliked.
The paradigm case of pure love is not romantic, but that between parents and infants [Frankfurt]
     Full Idea: Relationships that are primarily romantic or sexual do not provide very authentic or illuminating paradigms of love. ...The love of parents for their small children comes closest to offering recognizably pure instances of love.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 2.4)
     A reaction: Excellent. Though perhaps a relationships which began romantically might settle into something like the more 'pure' love that he has in mind. Such a relationship must, I trust, be possible between adults.
I value my children for their sake, but I also value my love for them for its own sake [Frankfurt]
     Full Idea: Beside the fact that my children are important to me for their own sakes, there is the additional fact that loving my children is important to me for its own sake.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 2.7)
     A reaction: This is at the heart of Frankfurt's thesis, that love is the bedrock of our values in life, and we therefore all need to love in order to generate any values in our life, quite apart from what our love is directed at. Nice thought.
22. Metaethics / C. The Good / 2. Happiness / d. Routes to happiness
We might not choose a very moral life, if the character or constitution was deficient [Frankfurt]
     Full Idea: People who are scrupulously moral may nonetheless be destined by deficiencies of character or of constitution to lead lives that no reasonable person would freely choose.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 1.2)
     A reaction: This fairly firmly refutes any Greek dream that all there is to happiness is leading a virtuous life. Frankfurt is with Aristotle more than with the Stoics. It would be tempting to sacrifice virtue to get a sunny character and good health.
22. Metaethics / C. The Good / 3. Pleasure / a. Nature of pleasure
People want to fulfill their desires, but also for their desires to be sustained [Frankfurt]
     Full Idea: Besides wanting to fulfil his desire, the person who cares about what he desires wants something else as well: he wants the desire to be sustained.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 1.6)
     A reaction: Plato, in 'Gorgias', makes this fact sound like a nightmare, resembling drug addiction, but in Frankfurt's formulation it looks like a good thing. If you want to make your family happy because you love them, you would dread finding your love had died.
23. Ethics / A. Egoism / 1. Ethical Egoism
Loving oneself is not a failing, but is essential to a successful life [Frankfurt]
     Full Idea: Far from demonstrating a flaw in character or being a sign of weakness, coming to love oneself is the deepest and most essential - and by no means the most readily attainable - achievement of a serious and successful life.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 2.14)
     A reaction: Obviously it will be necessary to dilineate the healthy form of self-love, which Frankfurt attempts to do. Ruthless vanity and self-seeking certainly look like the worst possible weaknesses of character. With that proviso, he is right.
23. Ethics / F. Existentialism / 4. Boredom
Boredom is serious, not just uncomfortable; it threatens our psychic survival [Frankfurt]
     Full Idea: Boredom is a serious matter. It is not a condition that we seek to avoid just because we do not find it enjoyable. ..It threatens the very continuation of conscious mental life. ..Avoiding bored is a primitive urge for psychic survival.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 2.8)
     A reaction: Presumably nihilism will flood into the emptiness created by boredom. Frankfurt will see it as a lack of love for anything in your life, and hence an absence of value. Frankfurt is very good.
25. Social Practice / A. Freedoms / 5. Freedom of lifestyle
Freedom needs autonomy (rather than causal independence) - embracing our own desires and choices [Frankfurt]
     Full Idea: What counts as far as freedom goes is not causal independence, but autonomy. It is a matter of whether we are active rather than passive in our motives and choices, whether those are what we really want, and not alien to us.
     From: Harry G. Frankfurt (The Reasons of Love [2005], 1.8)
     A reaction: This is why setting your own targets is excellent, but having targets set for you by authorities is pernicious. These kind of principles need to be clear before any plausible theory of liberalism can be developed.