Combining Texts

All the ideas for 'The Evolution of Logic', 'Truth by Convention' and 'Logic in Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


75 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
     Full Idea: We are all post-Kantians, ...because Kant set an agenda for philosophy that we are still working through.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Hart says that the main agenda is set by Kant's desire to defend the principle of sufficient reason against Hume's attack on causation. I would take it more generally to be the assessment of metaphysics, and of a priori knowledge.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
     Full Idea: The real monuments of philosophy are its problems.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Presumably he means '....rather than its solutions'. No other subject would be very happy with that sort of claim. Compare Idea 8243. A complaint against analytic philosophy is that it has achieved no consensus at all.
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
     Full Idea: By now, no education in abstract pursuits is adequate without some familiarity with sets.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: A heart-sinking observation for those who aspire to study metaphysics and modality. The question is, what will count as 'some' familiarity? Are only professional logicians now allowed to be proper philosophers?
If if time is money then if time is not money then time is money then if if if time is not money... [Quine]
     Full Idea: If if time is money then if time is not money then time is money then if if if time is not money then time is money then time is money then if time is money then time is money.
     From: Willard Quine (Truth by Convention [1935], p.95)
     A reaction: Quine offers this with no hint of a smile. I reproduce it for the benefit of people who hate analytic philosophy, and get tired of continental philosophy being attacked for its obscurity.
2. Reason / D. Definition / 3. Types of Definition
A 'constructive' (as opposed to 'analytic') definition creates a new sign [Frege]
     Full Idea: We construct a sense out of its constituents and introduce an entirely new sign to express this sense. This may be called a 'constructive definition', but we prefer to call it a 'definition' tout court. It contrasts with an 'analytic' definition.
     From: Gottlob Frege (Logic in Mathematics [1914], p.210)
     A reaction: An analytic definition is evidently a deconstruction of a past constructive definition. Fregean definition is a creative activity.
2. Reason / D. Definition / 7. Contextual Definition
Definition by words is determinate but relative; fixing contexts could make it absolute [Quine]
     Full Idea: A definition endows a word with complete determinacy of meaning relative to other words. But we could determine the meaning of a new word absolutely by specifying contexts which are to be true and contexts which are to be false.
     From: Willard Quine (Truth by Convention [1935], p.89)
     A reaction: This is the beginning of Quine's distinction between the interior of 'the web' and its edges. The attack on the analytic/synthetic distinction will break down the boundary between the two. Surprising to find 'absolute' anywhere in Quine.
2. Reason / D. Definition / 10. Stipulative Definition
Frege suggested that mathematics should only accept stipulative definitions [Frege, by Gupta]
     Full Idea: Frege has defended the austere view that, in mathematics at least, only stipulative definitions should be countenanced.
     From: report of Gottlob Frege (Logic in Mathematics [1914]) by Anil Gupta - Definitions 1.3
     A reaction: This sounds intriguingly at odds with Frege's well-known platonism about numbers (as sets of equinumerous sets). It makes sense for other mathematical concepts.
2. Reason / E. Argument / 6. Conclusive Proof
We must be clear about every premise and every law used in a proof [Frege]
     Full Idea: It is so important, if we are to have a clear insight into what is going on, for us to be able to recognise the premises of every inference which occurs in a proof and the law of inference in accordance with which it takes place.
     From: Gottlob Frege (Logic in Mathematics [1914], p.212)
     A reaction: Teachers of logic like natural deduction, because it reduces everything to a few clear laws, which can be stated at each step.
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
     Full Idea: It is an ancient and honourable view that truth is correspondence to fact; Tarski showed us how to do without facts here.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This is a very interesting spin on Tarski, who certainly seems to endorse the correspondence theory, even while apparently inventing a new 'semantic' theory of truth. It is controversial how far Tarski's theory really is a 'correspondence' theory.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
     Full Idea: We explain truth for sentences in terms of satisfaction of formulae. The crux here is that for a sentence, either all sequences satisfy it or none do (with no middle ground). For formulae, some sequences may satisfy it and others not.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This is the hardest part of Tarski's theory of truth to grasp.
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
     Full Idea: In any first-order language, there are infinitely many T-sentences. Since definitions should be finite, the agglomeration of all the T-sentences is not a definition of truth.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This may be a warning shot aimed at Davidson's extensive use of Tarski's formal account in his own views on meaning in natural language.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
     Full Idea: A 'conditional proof' licenses inferences to a conditional from a deduction of its consequent from its antecedent.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: That is, a proof can be enshrined in an arrow.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
     Full Idea: When a quantifier is attached to a variable, as in '∃(y)....', then it should be read as 'There exists an individual, call it y, such that....'. One should not read it as 'There exists a y such that...', which would attach predicate to quantifier.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: The point is to make clear that in classical logic the predicates attach to the objects, and not to some formal component like a quantifier.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
     Full Idea: It is set theory, and more specifically the theory of relations, that articulates order.
     From: William D. Hart (The Evolution of Logic [2010])
     A reaction: It would seem that we mainly need set theory in order to talk accurately about order, and about infinity. The two come together in the study of the ordinal numbers.
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
     Full Idea: The theory of types is a thing of the past. There is now nothing to choose between ZFC and NBG (Neumann-Bernays-Gödel). NF (Quine's) is a more specialized taste, but is a place to look if you want the universe.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
     Full Idea: ∈ relates across layers (Plato is a member of his unit set and the set of people), while ⊆ relates within layers (the singleton of Plato is a subset of the set of people). This distinction only became clear in the 19th century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: Getting these two clear may be the most important distinction needed to understand how set theory works.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
     Full Idea: Without the empty set, disjoint sets would have no intersection, and we could not form a∩b without checking that a and b meet. This is an example of the utility of the empty set.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: A novice might plausibly ask why there should be an intersection for every pair of sets, if they have nothing in common except for containing this little puff of nothingness. But then what do novices know?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
     Full Idea: In the second half of the twentieth century there emerged the opinion that foundation is the heart of the way to do set theory.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: It is foundation which is the central axiom of the iterative conception of sets, where each level of sets is built on previous levels, and they are all 'well-founded'.
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
     Full Idea: The usual statement of Foundation is that any nonempty set has a member disjoint from it. This phrasing is ordinal-free and closer to the primitives of ZFC.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
     Full Idea: When a set is finite, we can prove it has a choice function (∀x x∈A → f(x)∈A), but we need an axiom when A is infinite and the members opaque. From infinite shoes we can pick a left one, but from socks we need the axiom of choice.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The socks example in from Russell 1919:126.
With the Axiom of Choice every set can be well-ordered [Hart,WD]
     Full Idea: It follows from the Axiom of Choice that every set can be well-ordered.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: For 'well-ordered' see Idea 13460. Every set can be ordered with a least member.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
     Full Idea: It has been said (by Burt Dreben) that the only reason set theorists do not generally buy the view that V = L is that it would put them out of business by settling their open questions.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: Hart says V=L breaks with the interative conception of sets at level ω+1, which is countable is the constructible view, but has continuum many in the cumulative (iterative) hierarch. The constructible V=L view is anti-platonist.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
     Full Idea: 'Comprehension' is the assumption that every predicate has an extension. Naïve set theory is the theory whose axioms are extensionality and comprehension, and comprehension is thought to be its naivety.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: This doesn't, of course, mean that there couldn't be a more modest version of comprehension. The notorious difficulty come with the discovery of self-referring predicates which can't possibly have extensions.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
     Full Idea: That the iterative sets suffice for most of ZFC does not show they are necessary, nor is it evident that the set of operations has no fixed points (as 0 is a fixed point for square-of), and no infinitely descending chains (like negative integers).
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: People don't seem to worry that they aren't 'necessary', and further measures are possible to block infinitely descending chains.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
     Full Idea: We say that a binary relation R 'partially orders' a field A just in case R is irreflexive (so that nothing bears R to itself) and transitive. When the set is {a,b}, its subsets {a} and {b} are incomparable in a partial ordering.
     From: William D. Hart (The Evolution of Logic [2010], 1)
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
     Full Idea: A partial ordering is a 'total ordering' just in case any two members of its field are comparable, that is, either a is R to b, or b is R to a, or a is b.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: See Idea 13457 for 'partial ordering'. The three conditions are known as the 'trichotomy' condition.
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
     Full Idea: A total order 'well-orders' its field just in case any nonempty subset B of its field has an R-least member, that is, there is a b in B such that for any a in B different from b, b bears R to a. So less-than well-orders natural numbers, but not integers.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The natural numbers have a starting point, but the integers are infinite in both directions. In plain English, an order is 'well-ordered' if there is a starting point.
Von Neumann defines α<β as α∈β [Hart,WD]
     Full Idea: One of the glories of Von Neumann's theory of numbers is to define α < β to mean that α ∈ β.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
     Full Idea: Some have claimed that sets should be rethought in terms of still more basic things, categories.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: [He cites F.William Lawvere 1966] It appears to the the context of foundations for mathematics that he has in mind.
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Logic not only proves things, but also reveals logical relations between them [Frege]
     Full Idea: A proof does not only serve to convince us of the truth of what is proved: it also serves to reveal logical relations between truths. Hence we find in Euclid proofs of truths that appear to stand in no need of proof because they are obvious without one.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
     A reaction: This is a key idea in Frege's philosophy, and a reason why he is the founder of modern analytic philosophy, with logic placed at the centre of the subject. I take the value of proofs to be raising questions, more than giving answers.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Does some mathematical reasoning (such as mathematical induction) not belong to logic? [Frege]
     Full Idea: Are there perhaps modes of inference peculiar to mathematics which …do not belong to logic? Here one may point to inference by mathematical induction from n to n+1.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: He replies that it looks as if induction can be reduced to general laws, and those can be reduced to logic.
The closest subject to logic is mathematics, which does little apart from drawing inferences [Frege]
     Full Idea: Mathematics has closer ties with logic than does almost any other discipline; for almost the entire activity of the mathematician consists in drawing inferences.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: The interesting question is who is in charge - the mathematician or the logician?
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Quine quickly dismisses If-thenism [Quine, by Musgrave]
     Full Idea: Quine quickly dismisses If-thenism.
     From: report of Willard Quine (Truth by Convention [1935], p.327) by Alan Musgrave - Logicism Revisited §5
     A reaction: [Musgrave quotes a long chunk of Quine which is hard to compress!] Effectively, he says If-thenism is cheating, or begs the question, by eliminating whole sections of perfectly good mathematics, because they cannot be derived from axioms.
5. Theory of Logic / C. Ontology of Logic / 4. Logic by Convention
Logic needs general conventions, but that needs logic to apply them to individual cases [Quine, by Rey]
     Full Idea: Quine argues that logic could not be established by conventions, since the logical truths, being infinite in number, must be given by general conventions rather than singly; and logic is needed in the meta-theory, to apply to individual cases.
     From: report of Willard Quine (Truth by Convention [1935]) by Georges Rey - The Analytic/Synthetic Distinction 3.4
     A reaction: A helpful insight into Quine's claim. If only someone would print these one sentence summaries at the top of classic papers, we would all get far more out of them at first reading. Assuming Rey is right!
Claims that logic and mathematics are conventional are either empty, uninteresting, or false [Quine]
     Full Idea: If logic and mathematics being true by convention says the primitives can be conventionally described, that works for anything, and is empty; if the conventions are only for those fields, that's uninteresting; if a general practice, that is false.
     From: Willard Quine (Truth by Convention [1935], p.102)
     A reaction: This is Quine's famous denial of the traditional platonist view, and the new Wittgensteinian conventional view, preparing the ground for a more naturalistic and empirical view. I feel more sympathy with Quine than with the other two.
Logic isn't conventional, because logic is needed to infer logic from conventions [Quine]
     Full Idea: If logic is to proceed mediately from conventions, logic is needed for inferring logic from the conventions. Conventions for adopting logical primitives can only be communicated by free use of those very idioms.
     From: Willard Quine (Truth by Convention [1935], p.104)
     A reaction: A common pattern of modern argument, which always seems to imply that nothing can ever get off the ground. I suspect that there are far more benign circles in the world of thought than most philosophers imagine.
If a convention cannot be communicated until after its adoption, what is its role? [Quine]
     Full Idea: When a convention is incapable of being communicated until after its adoption, its role is not clear.
     From: Willard Quine (Truth by Convention [1935], p.106)
     A reaction: Quine is discussing the basis of logic, but the point applies to morality - that if there is said to be a convention at work, the concepts of morality must already exist to get the conventional framework off the ground. What is it that comes first?
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
'Theorems' are both proved, and used in proofs [Frege]
     Full Idea: Usually a truth is only called a 'theorem' when it has not merely been obtained by inference, but is used in turn as a premise for a number of inferences in the science. ….Proofs use non-theorems, which only occur in that proof.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
     Full Idea: All the main set theories deny that there is a set of which everything is a member. No interpretation has a domain with everything in it. So the universal quantifier never gets to mean everything all at once; 'all' does not mean all.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: Could you have an 'uncompleted' universal set, in the spirit of uncompleted infinities? In ordinary English we can talk about 'absolutely everything' - we just can't define a set of everything. Must we 'define' our domain?
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
     Full Idea: The beginning of modern model theory was when Morley proved Los's Conjecture in 1962 - that a complete theory in a countable language categorical in one uncountable cardinal is categorical in all.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Model theory studies how set theory can model sets of sentences [Hart,WD]
     Full Idea: Modern model theory investigates which set theoretic structures are models for which collections of sentences.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: So first you must choose your set theory (see Idea 13497). Then you presumably look at how to formalise sentences, and then look at the really tricky ones, many of which will involve various degrees of infinity.
Model theory is mostly confined to first-order theories [Hart,WD]
     Full Idea: There is no developed methematics of models for second-order theories, so for the most part, model theory is about models for first-order theories.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Models are ways the world might be from a first-order point of view [Hart,WD]
     Full Idea: Models are ways the world might be from a first-order point of view.
     From: William D. Hart (The Evolution of Logic [2010], 9)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Tracing inference backwards closes in on a small set of axioms and postulates [Frege]
     Full Idea: We can trace the chains of inference backwards, …and the circle of theorems closes in more and more. ..We must eventually come to an end by arriving at truths can cannot be inferred, …which are the axioms and postulates.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
     A reaction: The rival (more modern) view is that that all theorems are equal in status, and axioms are selected for convenience.
The essence of mathematics is the kernel of primitive truths on which it rests [Frege]
     Full Idea: Science must endeavour to make the circle of unprovable primitive truths as small as possible, for the whole of mathematics is contained in this kernel. The essence of mathematics has to be defined by this kernel of truths.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204-5)
     A reaction: [compressed] I will make use of this thought, by arguing that mathematics may be 'explained' by this kernel.
A truth can be an axiom in one system and not in another [Frege]
     Full Idea: It is possible for a truth to be an axiom in one system and not in another.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
     A reaction: Frege aspired to one huge single system, so this is a begrudging concession, one which modern thinkers would probably take for granted.
Axioms are truths which cannot be doubted, and for which no proof is needed [Frege]
     Full Idea: The axioms are theorems, but truths for which no proof can be given in our system, and no proof is needed. It follows from this that there are no false axioms, and we cannot accept a thought as an axiom if we are in doubt about its truth.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
     A reaction: He struggles to be as objective as possible, but has to concede that whether we can 'doubt' the axiom is one of the criteria.
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
     Full Idea: First-order logic is 'compact', which means that any logical consequence of a set (finite or infinite) of first-order sentences is a logical consequence of a finite subset of those sentences.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
     Full Idea: Berry's Paradox: by the least number principle 'the least number denoted by no description of fewer than 79 letters' exists, but we just referred to it using a description of 77 letters.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: I struggle with this. If I refer to 'an object to which no human being could possibly refer', have I just referred to something? Graham Priest likes this sort of idea.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
     Full Idea: The Burali-Forti Paradox was a crisis for Cantor's theory of ordinal numbers.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
     Full Idea: In effect, the machinery introduced to solve the liar can always be rejigged to yield another version the liar.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: [He cites Hans Herzberger 1980-81] The machinery is Tarski's device of only talking about sentences of a language by using a 'metalanguage'.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
To create order in mathematics we need a full system, guided by patterns of inference [Frege]
     Full Idea: We cannot long remain content with the present fragmentation [of mathematics]. Order can be created only by a system. But to construct a system it is necessary that in any step forward we take we should be aware of the logical inferences involved.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If analytic geometry identifies figures with arithmetical relations, logicism can include geometry [Quine]
     Full Idea: Geometry can be brought into line with logicism simply by identifying figures with arithmetical relations with which they are correlated thought analytic geometry.
     From: Willard Quine (Truth by Convention [1935], p.87)
     A reaction: Geometry was effectively reduced to arithmetic by Descartes and Fermat, so this seems right. You wonder, though, whether something isn't missing if you treat geometry as a set of equations. There is more on the screen than what's in the software.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
     Full Idea: We can show (using the axiom of choice) that the less-than relation, <, well-orders the ordinals, ...and that it partially orders the ordinals, ...and that it totally orders the ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
     Full Idea: The axiom of infinity with separation yields a least limit ordinal, which is called ω.
     From: William D. Hart (The Evolution of Logic [2010], 3)
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
     Full Idea: Since we can map the transfinite ordinals one-one into the infinite cardinals, there are at least as many infinite cardinals as transfinite ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
     Full Idea: It is easier to generalize von Neumann's finite ordinals into the transfinite. All Zermelo's nonzero finite ordinals are singletons, but if ω were a singleton it is hard to see how if could fail to be the successor of its member and so not a limit.
     From: William D. Hart (The Evolution of Logic [2010], 3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
     Full Idea: The real numbers were not isolated from geometry until the arithmetization of analysis during the nineteenth century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
     Full Idea: Mathematical induction is a way to establish truths about the infinity of natural numbers by a finite proof.
     From: William D. Hart (The Evolution of Logic [2010], 5)
     A reaction: If there are truths about infinities, it is very tempting to infer that the infinities must therefore 'exist'. A nice, and large, question in philosophy is whether there can be truths without corresponding implications of existence.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
There are four different possible conventional accounts of geometry [Quine]
     Full Idea: We can construe geometry by 1) identifying it with algebra, which is then defined on the basis of logic; 2) treating it as hypothetical statements; 3) defining it contextually; or 4) making it true by fiat, without making it part of logic.
     From: Willard Quine (Truth by Convention [1935], p.99)
     A reaction: [Very compressed] I'm not sure how different 3 is from 2. These are all ways to treat geometry conventionally. You could be more traditional, and say that it is a description of actual space, but the multitude of modern geometries seems against this.
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
     Full Idea: There is a familiar comparison between Euclid (unique parallel) and 'spherical' geometry (no parallel) and 'saddle' geometry (several parallels).
     From: William D. Hart (The Evolution of Logic [2010], 2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
If principles are provable, they are theorems; if not, they are axioms [Frege]
     Full Idea: If the law [of induction] can be proved, it will be included amongst the theorems of mathematics; if it cannot, it will be included amongst the axioms.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: This links Frege with the traditional Euclidean view of axioms. The question, then, is how do we know them, given that we can't prove them.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
If mathematics follows from definitions, then it is conventional, and part of logic [Quine]
     Full Idea: To claim that mathematical truths are conventional in the sense of following logically from definitions is the claim that mathematics is a part of logic.
     From: Willard Quine (Truth by Convention [1935], p.79)
     A reaction: Quine is about to attack logic as convention, so he is endorsing the logicist programme (despite his awareness of Gödel), but resisting the full Wittgenstein conventionalist picture.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
     Full Idea: The thesis that no existence proposition is analytic is one of the few constants in philosophical consciences, but there are many existence claims in mathematics, such as the infinity of primes, five regular solids, and certain undecidable propositions.
     From: William D. Hart (The Evolution of Logic [2010], 2)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
     Full Idea: Jespersen calls a noun a mass word when it has no plural, does not take numerical adjectives, and does not take 'fewer'.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: Jespersen was a great linguistics expert.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Every concept must have a sharp boundary; we cannot allow an indeterminate third case [Frege]
     Full Idea: Of any concept, we must require that it have a sharp boundary. Of any object it must hold either that it falls under the concept or it does not. We may not allow a third case in which it is somehow indeterminate whether an object falls under a concept.
     From: Gottlob Frege (Logic in Mathematics [1914], p.229), quoted by Ian Rumfitt - The Logic of Boundaryless Concepts p.1 n1
     A reaction: This is the voice of the classical logician, which has echoed by Russell. I'm with them, I think, in the sense that logic can only work with precise concepts. The jury is still out. Maybe we can 'precisify', without achieving total precision.
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
     Full Idea: The conception of Frege is that self-evidence is an intrinsic property of the basic truths, rules, and thoughts expressed by definitions.
     From: William D. Hart (The Evolution of Logic [2010], p.350)
     A reaction: The problem is always that what appears to be self-evident may turn out to be wrong. Presumably the effort of arriving at a definition ought to clarify and support the self-evident ingredient.
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
     Full Idea: In the case of the parallels postulate, Euclid's fifth axiom (the whole is greater than the part), and comprehension, saying was believing for a while, but what was said was false. This should make a shrewd philosopher sceptical about a priori knowledge.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Euclid's fifth is challenged by infinite numbers, and comprehension is challenged by Russell's paradox. I can't see a defender of the a priori being greatly worried about these cases. No one ever said we would be right - in doing arithmetic, for example.
18. Thought / B. Mechanics of Thought / 5. Mental Files
We need definitions to cram retrievable sense into a signed receptacle [Frege]
     Full Idea: If we need such signs, we also need definitions so that we can cram this sense into the receptacle and also take it out again.
     From: Gottlob Frege (Logic in Mathematics [1914], p.209)
     A reaction: Has anyone noticed that Frege is the originator of the idea of the mental file? Has anyone noticed the role that definition plays in his account?
We use signs to mark receptacles for complex senses [Frege]
     Full Idea: We often need to use a sign with which we associate a very complex sense. Such a sign seems a receptacle for the sense, so that we can carry it with us, while being always aware that we can open this receptacle should we need what it contains.
     From: Gottlob Frege (Logic in Mathematics [1914], p.209)
     A reaction: This exactly the concept of a mental file, which I enthusiastically endorse. Frege even talks of 'opening the receptacle'. For Frege a definition (which he has been discussing) is the assigment of a label (the 'definiendum') to the file (the 'definiens').
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]
     Full Idea: A Fregean concept is a function that assigns to each object a truth value. So instead of the colour green, the concept GREEN assigns truth to each green thing, but falsity to anything else.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This would seem to immediately hit the renate/cordate problem, if there was a world in which all and only the green things happened to be square. How could Frege then distinguish the green from the square? Compare Idea 8245.
19. Language / A. Nature of Meaning / 6. Meaning as Use
A sign won't gain sense just from being used in sentences with familiar components [Frege]
     Full Idea: No sense accrues to a sign by the mere fact that it is used in one or more sentences, the other constituents of which are known.
     From: Gottlob Frege (Logic in Mathematics [1914], p.213)
     A reaction: Music to my ears. I've never grasped how meaning could be grasped entirely through use.
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
Thoughts are not subjective or psychological, because some thoughts are the same for us all [Frege]
     Full Idea: A thought is not something subjective, is not the product of any form of mental activity; for the thought that we have in Pythagoras's theorem is the same for everybody.
     From: Gottlob Frege (Logic in Mathematics [1914], p.206)
     A reaction: When such thoughts are treated as if the have objective (platonic) existence, I become bewildered. I take a thought (or proposition) to be entirely psychological, but that doesn't stop two people from having the same thought.
A thought is the sense expressed by a sentence, and is what we prove [Frege]
     Full Idea: The sentence is of value to us because of the sense that we grasp in it, which is recognisably the same in a translation. I call this sense the thought. What we prove is not a sentence, but a thought.
     From: Gottlob Frege (Logic in Mathematics [1914], p.206)
     A reaction: The 'sense' is presumably the German 'sinn', and a 'thought' in Frege is what we normally call a 'proposition'. So the sense of a sentence is a proposition, and logic proves propositions. I'm happy with that.
19. Language / D. Propositions / 5. Unity of Propositions
The parts of a thought map onto the parts of a sentence [Frege]
     Full Idea: A sentence is generally a complex sign, so the thought expressed by it is complex too: in fact it is put together in such a way that parts of a thought correspond to parts of the sentence.
     From: Gottlob Frege (Logic in Mathematics [1914], p.207)
     A reaction: This is the compositional view of propositions, as opposed to the holistic view.