Combining Texts

All the ideas for 'Symposium', 'On the Question of Absolute Undecidability' and 'Concepts without Boundaries'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
If 'red' is vague, then membership of the set of red things is vague, so there is no set of red things [Sainsbury]
     Full Idea: Sets have sharp boundaries, or are sharp objects; an object either definitely belongs to a set, or it does not. But 'red' is vague; there objects which are neither definitely red nor definitely not red. Hence there is no set of red things.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §2)
     A reaction: Presumably that will entail that there IS a set of things which can be described as 'definitely red'. If we describe something as 'definitely having a hint of red about it', will that put it in a set? In fact will the applicability of 'definitely' do?
7. Existence / E. Categories / 2. Categorisation
We should abandon classifying by pigeon-holes, and classify around paradigms [Sainsbury]
     Full Idea: We must reject the classical picture of classification by pigeon-holes, and think in other terms: classifying can be, and often is, clustering round paradigms.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §8)
     A reaction: His conclusion to a discussion of the problem of vagueness, where it is identified with concepts which have no boundaries. Pigeon-holes are a nice exemplar of the Enlightenment desire to get everything right. I prefer Aristotle's categories, Idea 3311.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague concepts are concepts without boundaries [Sainsbury]
     Full Idea: If a word is vague, there are or could be borderline cases, but non-vague expressions can also have borderline cases. The essence of vagueness is to be found in the idea vague concepts are concepts without boundaries.
     From: Mark Sainsbury (Concepts without Boundaries [1990], Intro)
     A reaction: He goes on to say that vague concepts are not embodied in clear cut sets, which is what gives us our notion of a boundary. So what is vague is 'membership'. You are either a member of a club or not, but when do you join the 'middle-aged'?
If concepts are vague, people avoid boundaries, can't spot them, and don't want them [Sainsbury]
     Full Idea: Vague concepts are boundaryless, ...and the manifestations are an unwillingness to draw any such boundaries, the impossibility of identifying such boundaries, and needlessness and even disutility of such boundaries.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §5)
     A reaction: People have a very fine-tuned notion of whether the sharp boundary of a concept is worth discussing. The interesting exception are legal people, who are often forced to find precision where everyone else hates it. Who deserves to inherit the big house?
Boundaryless concepts tend to come in pairs, such as child/adult, hot/cold [Sainsbury]
     Full Idea: Boundaryless concepts tend to come in systems of contraries: opposed pairs like child/adult, hot/cold, weak/strong, true/false, and complex systems of colour terms. ..Only a contrast with 'adult' will show what 'child' excludes.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §5)
     A reaction: This might be expected. It all comes down to the sorites problem, of when one thing turns into something else. If it won't merge into another category, then presumably the isolated concept stays applicable (until reality terminates it? End of sheep..).
22. Metaethics / B. Value / 2. Values / h. Fine deeds
Niceratus learnt the whole of Homer by heart, as a guide to goodness [Xenophon]
     Full Idea: Niceratus said that his father, because he was concerned to make him a good man, made him learn the whole works of Homer, and he could still repeat by heart the entire 'Iliad' and 'Odyssey'.
     From: Xenophon (Symposium [c.391 BCE], 3.5)
     A reaction: This clearly shows the status which Homer had in the teaching of morality in the time of Socrates, and it is precisely this acceptance of authority which he was challenging, in his attempts to analyse the true basis of virtue