Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'A priori/A posteriori' and 'The Foundations of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: there is an infinity of distinguishable individuals [Ramsey]
     Full Idea: The Axiom of Infinity means that there are an infinity of distinguishable individuals, which is an empirical proposition.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §5)
     A reaction: The Axiom sounds absurd, as a part of a logical system, but Ramsey ends up defending it. Logical tautologies, which seem to be obviously true, are rendered absurd if they don't refer to any objects, and some of them refer to infinities of objects.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: to every non-elementary function there is an equivalent elementary function [Ramsey]
     Full Idea: The Axiom of Reducibility asserted that to every non-elementary function there is an equivalent elementary function [note: two functions are equivalent when the same arguments render them both true or both false].
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §2)
     A reaction: Ramsey in the business of showing that this axiom from Russell and Whitehead is not needed. He says that the axiom seems to be needed for induction and for Dedekind cuts. Since the cuts rest on it, and it is weak, Ramsey says it must go.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Either 'a = b' vacuously names the same thing, or absurdly names different things [Ramsey]
     Full Idea: In 'a = b' either 'a' and 'b' are names of the same thing, in which case the proposition says nothing, or of different things, in which case it is absurd. In neither case is it an assertion of a fact; it only asserts when a or b are descriptions.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: This is essentially Frege's problem with Hesperus and Phosphorus. How can identities be informative? So 2+2=4 is extensionally vacuous, but informative because they are different descriptions.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
5. Theory of Logic / L. Paradox / 1. Paradox
Contradictions are either purely logical or mathematical, or they involved thought and language [Ramsey]
     Full Idea: Group A consists of contradictions which would occur in a logical or mathematical system, involving terms such as class or number. Group B contradictions are not purely logical, and contain some reference to thought, language or symbolism.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.171), quoted by Graham Priest - The Structure of Paradoxes of Self-Reference 1
     A reaction: This has become the orthodox division of all paradoxes, but the division is challenged by Priest (Idea 13373). He suggests that we now realise (post-Tarski?) that language is more involved in logic and mathematics than we thought.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Formalists neglect content, but the logicists have focused on generalizations, and neglected form [Ramsey]
     Full Idea: The formalists neglected the content altogether and made mathematics meaningless, but the logicians neglected the form and made mathematics consist of any true generalisations; only by taking account of both sides can we obtain an adequate theory.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: He says mathematics is 'tautological generalizations'. It is a criticism of modern structuralism that it overemphasises form, and fails to pay attention to the meaning of the concepts which stand at the 'nodes' of the structure.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is hopeless, because it focuses on propositions and ignores concepts [Ramsey]
     Full Idea: The hopelessly inadequate formalist theory is, to some extent, the result of considering only the propositions of mathematics and neglecting the analysis of its concepts.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: You'll have to read Ramsey to see how this thought pans out, but it at least gives a pointer to how to go about addressing the question.
11. Knowledge Aims / A. Knowledge / 4. Belief / d. Cause of beliefs
I just confront the evidence, and let it act on me [Ramsey]
     Full Idea: I can but put the evidence before me, and let it act on my mind.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.202), quoted by Michael Potter - The Rise of Analytic Philosophy 1879-1930 70 'Deg'
     A reaction: Potter calls this observation 'downbeat', but I am an enthusiastic fan. It is roughly my view of both concept formation and of knowledge. You soak up the world, and respond appropriately. The trick is in the selection of evidence to confront.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
Maybe imagination is the source of a priori justification [Casullo]
     Full Idea: Some maintain that experiments in imagination are the source of a priori justification.
     From: Albert Casullo (A priori/A posteriori [1992], p.1)
     A reaction: What else could assessments of possibility and necessity be based on except imagination?
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / a. Reliable knowledge
A belief is knowledge if it is true, certain and obtained by a reliable process [Ramsey]
     Full Idea: I have always said that a belief was knowledge if it was 1) true, ii) certain, iii) obtained by a reliable process.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.258), quoted by Michael Potter - The Rise of Analytic Philosophy 1879-1930 66 'Rel'
     A reaction: Not sure why it has to be 'certain' as well as 'true'. It seems that 'true' is objective, and 'certain' subjective. I think I know lots of things of which I am not fully certain. Reliabilism long preceded Alvin Goldman.