Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'Definitions' and 'The Really Hard Problem'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

2. Reason / D. Definition / 1. Definitions
Definitions usually have a term, a 'definiendum' containing the term, and a defining 'definiens' [Gupta]
     Full Idea: Many definitions have three elements: the term that is defined, an expression containing the defined term (the 'definiendum'), and another expression (the 'definiens') that is equated by the definition with this expression.
     From: Anil Gupta (Definitions [2008], 2)
     A reaction: He notes that the definiendum and the definiens are assumed to be in the 'same logical category', which is a right can of worms.
Notable definitions have been of piety (Plato), God (Anselm), number (Frege), and truth (Tarski) [Gupta]
     Full Idea: Notable examples of definitions in philosophy have been Plato's (e.g. of piety, in 'Euthyphro'), Anselm's definition of God, the Frege-Russell definition of number, and Tarski's definition of truth.
     From: Anil Gupta (Definitions [2008], Intro)
     A reaction: All of these are notable for the extensive metaphysical conclusions which then flow from what seems like a fairly neutral definition. We would expect that if we were defining essences, but not if we were just defining word usage.
2. Reason / D. Definition / 2. Aims of Definition
A definition needs to apply to the same object across possible worlds [Gupta]
     Full Idea: In a modal logic in which names are non-vacuous and rigid, not only must existence and uniqueness in a definition be shown to hold necessarily, it must be shown that the definiens is satisfied by the same object across possible worlds.
     From: Anil Gupta (Definitions [2008], 2.4)
The 'revision theory' says that definitions are rules for improving output [Gupta]
     Full Idea: The 'revision theory' of definitions says definitions impart a hypothetical character, giving a rule of revision rather than a rule of application. ...The output interpretation is better than the input one.
     From: Anil Gupta (Definitions [2008], 2.7)
     A reaction: Gupta mentions the question of whether such definitions can extend into the trans-finite.
2. Reason / D. Definition / 3. Types of Definition
Traditional definitions are general identities, which are sentential and reductive [Gupta]
     Full Idea: Traditional definitions are generalized identities (so definiendum and definiens can replace each other), in which the sentential is primary (for use in argument), and they involve reduction (and hence eliminability in a ground language).
     From: Anil Gupta (Definitions [2008], 2.2)
Traditional definitions need: same category, mention of the term, and conservativeness and eliminability [Gupta]
     Full Idea: A traditional definition requires that the definiendum contains the defined term, that definiendum and definiens are of the same logical category, and the definition is conservative (adding nothing new), and makes elimination possible.
     From: Anil Gupta (Definitions [2008], 2.4)
A definition can be 'extensionally', 'intensionally' or 'sense' adequate [Gupta]
     Full Idea: A definition is 'extensionally adequate' iff there are no actual counterexamples to it. It is 'intensionally adequate' iff there are no possible counterexamples to it. It is 'sense adequate' (or 'analytic') iff it endows the term with the right sense.
     From: Anil Gupta (Definitions [2008], 1.4)
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
2. Reason / D. Definition / 4. Real Definition
Chemists aim at real definition of things; lexicographers aim at nominal definition of usage [Gupta]
     Full Idea: The chemist aims at real definition, whereas the lexicographer aims at nominal definition. ...Perhaps real definitions investigate the thing denoted, and nominal definitions investigate meaning and use.
     From: Anil Gupta (Definitions [2008], 1.1)
     A reaction: Very helpful. I really think we should talk much more about the neglected chemists when we discuss science. Theirs is the single most successful branch of science, the paradigm case of what the whole enterprise aims at.
2. Reason / D. Definition / 6. Definition by Essence
If definitions aim at different ideals, then defining essence is not a unitary activity [Gupta]
     Full Idea: Some definitions aim at precision, others at fairness, or at accuracy, or at clarity, or at fecundity. But if definitions 'give the essence of things' (the Aristotelian formula), then it may not be a unitary kind of activity.
     From: Anil Gupta (Definitions [2008], 1)
     A reaction: We don't have to accept this conclusion so quickly. Human interests may shift the emphasis, but there may be a single ideal definition of which these various examples are mere parts.
2. Reason / D. Definition / 10. Stipulative Definition
Stipulative definition assigns meaning to a term, ignoring prior meanings [Gupta]
     Full Idea: Stipulative definition imparts a meaning to the defined term, and involves no commitment that the assigned meaning agrees with prior uses (if any) of the term
     From: Anil Gupta (Definitions [2008], 1.3)
     A reaction: A nice question is how far one can go in stretching received usage. If I define 'democracy' as 'everyone is involved in decisions', that is sort of right, but pushing the boundaries (children, criminals etc).
2. Reason / D. Definition / 11. Ostensive Definition
Ostensive definitions look simple, but are complex and barely explicable [Gupta]
     Full Idea: Ostensive definitions look simple (say 'this stick is one meter long', while showing a stick), but they are effective only because a complex linguistic and conceptual capacity is operative in the background, of which it is hard to give an account.
     From: Anil Gupta (Definitions [2008], 1.2)
     A reaction: The full horror of the situation is brought out in Quine's 'gavagai' example (Idea 6312)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
The ordered pair <x,y> is defined as the set {{x},{x,y}}, capturing function, not meaning [Gupta]
     Full Idea: The ordered pair <x,y> is defined as the set {{x},{x,y}}. This does captures its essential uses. Pairs <x,y> <u,v> are identical iff x=u and y=v, and the definition satisfies this. Function matters here, not meaning.
     From: Anil Gupta (Definitions [2008], 1.5)
     A reaction: This is offered as an example of Carnap's 'explications', rather than pure definitions. Quine extols it as a philosophical paradigm (1960:§53).
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
15. Nature of Minds / B. Features of Minds / 2. Unconscious Mind
Research suggest that we overrate conscious experience [Flanagan]
     Full Idea: The emerging consensus is that we probably overrate the power of conscious experience in our lives. Freud, of course, said the same thing for different reasons.
     From: Owen Flanagan (The Really Hard Problem [2007], 3 'Ontology')
     A reaction: [He cites Pockett, Banks and Gallagher 2006]. Freud was concerned with big deep secrets, but the modern view concerns ordinary decisions and perceptions. An important idea, which should incline us all to become Nietzscheans.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Sensations may be identical to brain events, but complex mental events don't seem to be [Flanagan]
     Full Idea: There is still some hope for something like identity theory for sensations. But almost no one believes that strict identity theory will work for more complex mental states. Strict identity is stronger than type neurophysicalism.
     From: Owen Flanagan (The Really Hard Problem [2007], 3 'Ontology')
     A reaction: It is so hard to express the problem. What needs to be explained? How can one bunch of neurons represent many different things? It's not like computing. That just transfers the data to brains, where the puzzling stuff happens.
22. Metaethics / B. Value / 1. Nature of Value / b. Fact and value
Morality is normative because it identifies best practices among the normal practices [Flanagan]
     Full Idea: Morality is 'normative' in the sense that it consists of the extraction of ''good' or 'excellent' practices from common practices.
     From: Owen Flanagan (The Really Hard Problem [2007], 4 'Naturalism')
22. Metaethics / B. Value / 2. Values / f. Altruism
For Darwinians, altruism is either contracts or genetics [Flanagan]
     Full Idea: Two explanations came forward in the neo-Darwinian synthesis. Altruism is either 1) person-based reciprocal altruism, or 2) gene-based kin altruism.
     From: Owen Flanagan (The Really Hard Problem [2007], 2 'Darwin')
     A reaction: Flanagan obviously thinks there is also 'genuine psychological atruism'. Presumably we don't explain mathematics or music or the desire to travel as either contracts or genetics, so we have other explanations available.
22. Metaethics / C. The Good / 2. Happiness / b. Eudaimonia
We need Eudaimonics - the empirical study of how we should flourish [Flanagan]
     Full Idea: It would be nice if I could advance the case for Eudaimonics - empirical enquiry into the nature, causes, and constituents of flourishing, …and the case for some ways of living and being as better than others.
     From: Owen Flanagan (The Really Hard Problem [2007], 4 'Normative')
     A reaction: Things seem to be moving in that direction. Lots of statistics about happiness have been appearing.
24. Political Theory / D. Ideologies / 9. Communism
Alienation is not finding what one wants, or being unable to achieve it [Flanagan]
     Full Idea: What Marx called 'alienation' is the widespread condition of not being able to discover what one wants, or not being remotely positioned to achieve.
     From: Owen Flanagan (The Really Hard Problem [2007], 2 'Expanding')
     A reaction: I took alienation to concern people's relationship to the means of production in their trade. On Flanagan's definition I would expect almost everyone aged under 20 to count as alienated.
29. Religion / C. Spiritual Disciplines / 3. Buddhism
Buddhists reject God and the self, and accept suffering as key, and liberation through wisdom [Flanagan]
     Full Idea: Buddhism rejected the idea of a creator God, and the unchanging self [atman]. They accept the appearance-reality distinction, reward for virtue [karma], suffering defining our predicament, and that liberation [nirvana] is possible through wisdom.
     From: Owen Flanagan (The Really Hard Problem [2007], 3 'Buddhism')
     A reaction: [Compressed] Flanagan is an analytic philosopher and a practising Buddhist. Looking at a happiness map today which shows Europeans largely happy, and Africans largely miserable, I can see why they thought suffering was basic.