Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'A Pragmatic Conception of the A Priori' and 'Mathematics and Indispensibility'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There are several logics, none of which will ever derive falsehoods from truth [Lewis,CI]
     Full Idea: The fact is that there are several logics, markedly different, each self-consistent in its own terms and such that whoever, using it, avoids false premises, will never reach a false conclusion.
     From: C.I. Lewis (A Pragmatic Conception of the A Priori [1923], p.366)
     A reaction: As the man who invented modal logic in five different versions, he speaks with some authority. Logicians now debate which version is the best, so how could that be decided? You could avoid false conclusions by never reasoning at all.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle is just our preference for a simplified dichotomy in experience [Lewis,CI]
     Full Idea: The law of excluded middle formulates our decision that whatever is not designated by a certain term shall be designated by its negative. It declares our purpose to make a complete dichotomy of experience, ..which is only our penchant for simplicity.
     From: C.I. Lewis (A Pragmatic Conception of the A Priori [1923], p.365)
     A reaction: I find this view quite appealing. 'Look, it's either F or it isn't!' is a dogmatic attitude which irritates a lot of people, and appears to be dispensible. Intuitionists in mathematics dispense with the principle, and vagueness threatens it.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
Names represent a uniformity in experience, or they name nothing [Lewis,CI]
     Full Idea: A name must represent some uniformity in experience or it names nothing.
     From: C.I. Lewis (A Pragmatic Conception of the A Priori [1923], p.368)
     A reaction: I like this because, in the quintessentially linguistic debate about the exact logical role of names, it reminds us that names arise because of the way reality is; they are not sui generis private games for logicians.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
All scientific tests will verify mathematics, so it is a background, not something being tested [Sober]
     Full Idea: If mathematical statements are part of every competing hypothesis, then no matter which hypothesis comes out best in the light of observations, they will be part of the best hypothesis. They are not tested, but are a background assumption.
     From: Elliott Sober (Mathematics and Indispensibility [1993], 45), quoted by Charles Chihara - A Structural Account of Mathematics
     A reaction: This is a very nice objection to the Quine-Putnam thesis that mathematics is confirmed by the ongoing successes of science.
10. Modality / A. Necessity / 11. Denial of Necessity
Necessary truths are those we will maintain no matter what [Lewis,CI]
     Full Idea: Those laws and those laws only have necessary truth which we are prepared to maintain, no matter what.
     From: C.I. Lewis (A Pragmatic Conception of the A Priori [1923], p.367)
     A reaction: This bold and simple claim has famously been torpedoed by a well-known counterexample - that virtually every human being will cling on to the proposition "dogs have at some time existed" no matter what, but it clearly isn't a necessary truth.
12. Knowledge Sources / A. A Priori Knowledge / 7. A Priori from Convention
We can maintain a priori principles come what may, but we can also change them [Lewis,CI]
     Full Idea: The a priori contains principles which can be maintained in the face of all experience, representing the initiative of the mind. But they are subject to alteration on pragmatic grounds, if expanding experience shows their intellectual infelicity.
     From: C.I. Lewis (A Pragmatic Conception of the A Priori [1923], p.373)
     A reaction: [compressed] This simply IS Quine's famous 'web of belief' picture, showing how firmly Quine is in the pragmatist tradition. Lewis treats a priori principles as a pragmatic toolkit, which can be refined to be more effective. Not implausible...
18. Thought / E. Abstraction / 2. Abstracta by Selection
We have to separate the mathematical from physical phenomena by abstraction [Lewis,CI]
     Full Idea: Physical processes present us with phenomena in which the purely mathematical has to be separated out by abstraction.
     From: C.I. Lewis (A Pragmatic Conception of the A Priori [1923], p.367)
     A reaction: This is the father of modal logic endorsing traditional abstractionism, it seems. He is also, though, endorsing the view that a priori knowledge is created by us, with pragmatic ends in view.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
Science seeks classification which will discover laws, essences, and predictions [Lewis,CI]
     Full Idea: The scientific search is for such classification as will make it possible to correlate appearance and behaviour, to discover law, to penetrate to the "essential nature" of things in order that behaviour may become predictable.
     From: C.I. Lewis (A Pragmatic Conception of the A Priori [1923], p.368)
     A reaction: Modern scientific essentialists no longer invoke scare quotes, and I think we should talk of the search for the 'mechanisms' which explain behaviour, but Lewis seems to have been sixty years ahead of his time.