Combining Texts

All the ideas for '', 'Constructibility and Mathematical Existence' and 'Treatise on Quantity'

unexpand these ideas     |    start again     |     specify just one area for these texts


9 ideas

4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
We could talk of open sentences, instead of sets [Chihara, by Shapiro]
     Full Idea: Chihara's programme is to replace talk of sets with talk of open sentences. Instead of speaking of the set of all cats, we talk about the open sentence 'x is a cat'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: As Shapiro points out, this is following up Russell's view that sets should be replaced with talk of properties. Chihara is expressing it more linguistically. I'm in favour of any attempt to get rid of sets.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
     Full Idea: If a designated conclusion follows from the premisses, but the argument involves two howlers which cancel each other out, then the moral is that the path an argument takes from premisses to conclusion does matter to its logical evaluation.
     From: Ian Rumfitt ("Yes" and "No" [2000], II)
     A reaction: The drift of this is that our view of logic should be a little closer to the reasoning of ordinary language, and we should rely a little less on purely formal accounts.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
     Full Idea: If 'and' and 'but' really are alike in sense, in what might that likeness consist? Some philosophers of classical logic will reply that they share a sense by virtue of sharing a truth table.
     From: Ian Rumfitt ("Yes" and "No" [2000])
     A reaction: This is the standard view which Rumfitt sets out to challenge.
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
     Full Idea: A connective will possess the sense that it has by virtue of its competent users' finding certain rules of inference involving it to be primitively obvious.
     From: Ian Rumfitt ("Yes" and "No" [2000], III)
     A reaction: Rumfitt cites Peacocke as endorsing this view, which characterises the logical connectives by their rules of usage rather than by their pure semantic value.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Chihara's system is a variant of type theory, from which he can translate sentences [Chihara, by Shapiro]
     Full Idea: Chihara's system is a version of type theory. Translate thus: replace variables of sets of type n with level n variables over open sentences, replace membership/predication with satisfaction, and high quantifiers with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
We can replace type theory with open sentences and a constructibility quantifier [Chihara, by Shapiro]
     Full Idea: Chihara's system is similar to simple type theory; he replaces each type with variables over open sentences, replaces membership (or predication) with satisfaction, and replaces quantifiers over level 1+ variables with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: This is interesting for showing that type theory may not be dead. The revival of supposedly dead theories is the bread-and-butter of modern philosophy.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Introduce a constructibility quantifiers (Cx)Φ - 'it is possible to construct an x such that Φ' [Chihara, by Shapiro]
     Full Idea: Chihara has proposal a modal primitive, a 'constructability quantifier'. Syntactically it behaves like an ordinary quantifier: Φ is a formula, and x a variable. Then (Cx)Φ is a formula, read as 'it is possible to construct an x such that Φ'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
     A reaction: We only think natural numbers are infinite because we see no barrier to continuing to count, i.e. to construct new numbers. We accept reals when we know how to construct them. Etc. Sounds promising to me (though not to Shapiro).
9. Objects / C. Structure of Objects / 4. Quantity of an Object
Quantity is the quantified parts of a thing, plus location and coordination [Olivi]
     Full Idea: Quantity refers to nothing other than the parts of the thing quantified, together with their location or position, being extrinsically coordinated with each other.
     From: Peter John Olivi (Treatise on Quantity [1286], f. 49vb), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 14.1
     A reaction: I'm not sure I understand 'extrinsically'. Is there some external stretching force? God spends his time spreading out his stuff? It is nice that being spread out isn't taken for granted. We take much more for granted than they did. Motion, for example.
19. Language / F. Communication / 3. Denial
We learn 'not' along with affirmation, by learning to either affirm or deny a sentence [Rumfitt]
     Full Idea: The standard view is that affirming not-A is more complex than affirming the atomic sentence A itself, with the latter determining its sense. But we could learn 'not' directly, by learning at once how to either affirm A or reject A.
     From: Ian Rumfitt ("Yes" and "No" [2000], IV)
     A reaction: [compressed] This seems fairly anti-Fregean in spirit, because it looks at the psychology of how we learn 'not' as a way of clarifying what we mean by it, rather than just looking at its logical behaviour (and thus giving it a secondary role).