Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'On the Infinite' and 'Philosophy of Science: Very Short Intro (2nd ed)'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
I aim to establish certainty for mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is the clearest statement of the famous Hilbert Programme, which is said to have been brought to an abrupt end by Gödel's Incompleteness Theorems.
We believe all mathematical problems are solvable [Hilbert]
     Full Idea: The thesis that every mathematical problem is solvable - we are all convinced that it really is so.
     From: David Hilbert (On the Infinite [1925], p.200)
     A reaction: This will include, for example, Goldbach's Conjecture (every even is the sum of two primes), which is utterly simple but with no proof anywhere in sight.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
     Full Idea: No one shall drive us out of the paradise the Cantor has created for us.
     From: David Hilbert (On the Infinite [1925], p.191), quoted by James Robert Brown - Philosophy of Mathematics
     A reaction: This is Hilbert's famous refusal to accept any account of mathematics, such as Kant's, which excludes actual infinities. Cantor had laid out a whole glorious hierarchy of different infinities.
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
     Full Idea: To preserve the simple formal rules of ordinary Aristotelian logic, we must supplement the finitary statements with ideal statements.
     From: David Hilbert (On the Infinite [1925], p.195)
     A reaction: I find very appealing the picture of mathematics as rooted in the physical world, and then gradually extended by a series of 'idealisations', which should perhaps be thought of as fictions.
Only the finite can bring certainty to the infinite [Hilbert]
     Full Idea: Operating with the infinite can be made certain only by the finitary.
     From: David Hilbert (On the Infinite [1925], p.201)
     A reaction: See 'Compactness' for one aspect of this claim. I think Hilbert was fighting a rearguard action, and his idea now has few followers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
     Full Idea: Just as in the limit processes of the infinitesimal calculus, the infinitely large and small proved to be a mere figure of speech, so too we must realise that the infinite in the sense of an infinite totality, used in deductive methods, is an illusion.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is a very authoritative rearguard action. I no longer think the dispute matters much, it being just a dispute over a proposed new meaning for the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
     Full Idea: A homogeneous continuum which admits of the sort of divisibility needed to realise the infinitely small is nowhere to be found in reality.
     From: David Hilbert (On the Infinite [1925], p.186)
     A reaction: He makes this remark as a response to Planck's new quantum theory (the year before the big works of Heisenberg and Schrödinger). Personally I don't see why infinities should depend on the physical world, since they are imaginary.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
     Full Idea: We can conceive mathematics to be a stock of two kinds of formulas: first, those to which the meaningful communications of finitary statements correspond; and secondly, other formulas which signify nothing and which are ideal structures of our theory.
     From: David Hilbert (On the Infinite [1925], p.196), quoted by David Bostock - Philosophy of Mathematics 6.1
7. Existence / C. Structure of Existence / 2. Reduction
Multiple realisability is said to make reduction impossible [Okasha]
     Full Idea: Philosophers have often invoked multiple realisability to explain why psychology cannot be reduced to physics or chemistry, but in principle the explanation works for any higher-level science.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 3)
     A reaction: He gives the example of a 'cell' in biology, which can be implemented in all sorts of ways. Presumably that can be reduced to many sorts of physics, but not just to one sort. The high level contains patterns that vanish at the low level.
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184), quoted by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: This dream is famous for being shattered by Gödel's Incompleteness Theorem a mere six years later. Neverless there seem to be more limited certainties which are accepted in mathematics. The certainty of the whole of arithmetic is beyond us.
14. Science / A. Basis of Science / 3. Experiment
Not all sciences are experimental; astronomy relies on careful observation [Okasha]
     Full Idea: Not all sciences are experimental - astronomers obviously cannot do experiments on the heavens, but have to content themselves with careful observation instead.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 1)
     A reaction: Biology too. Psychology tries hard to be experimental, but I doubt whether the main theories emerge from experiments.
Randomised Control Trials have a treatment and a control group, chosen at random [Okasha]
     Full Idea: In the Randomised Controlled Trial for a new drug, patients are divided at random into a treatment group who receive the drug, and a control group who do not. Randomisation is important to eliminate confounding factors.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: [compressed] Devised in the 1930s, and a major breakthrough in methodology for that kind of trial. Psychologists use the method all the time. Some theorists say it is the only reliable method.
14. Science / A. Basis of Science / 6. Falsification
The discoverers of Neptune didn't change their theory because of an anomaly [Okasha]
     Full Idea: Adams and Leverrier began with Newton's theory of gravity, which made an incorrect prediction about the orbit of Uranus. They explained away the conflicting observations by postulating a new planet, Neptune.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 1)
     A reaction: The falsificationists can say that the anomalous observation did not falsify the theory, because they didn't know quite what they were observing. It was not in fact an anomaly for Newtonian theory at all.
Science mostly aims at confirming theories, rather than falsifying them [Okasha]
     Full Idea: The goal of science is not solely to refute theories, but also to determine which theories are true (or probably true). When a scientist collects data …they are trying to show that their own theory is true.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: This is the aim of 'accommodation' to a wide set of data, rather than prediction or refutation.
14. Science / B. Scientific Theories / 1. Scientific Theory
Theories with unobservables are underdetermined by the evidence [Okasha]
     Full Idea: According to anti-realists, scientific theories which posit unobservable entities are underdetermined by the empirical data - there will always be a number of competing theories which can account for the data equally well.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 4)
     A reaction: The fancy version is Putnam's model theoretic argument, explored by Tim Button. The reply, apparently, is that there are other criteria for theory choice, apart from the data. And we don't have to actually observe everything in a theory.
14. Science / B. Scientific Theories / 5. Commensurability
Two things can't be incompatible if they are incommensurable [Okasha]
     Full Idea: If two things are incommensurable they cannot be incompatible.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 5)
     A reaction: Kuhn had claimed that two rival theories are incompatible, which forces the paradigm shift. He can't stop the slide off into total relativism. The point is there cannot be a conflict if there cannot even be a comparison.
14. Science / C. Induction / 1. Induction
Induction is inferences from examined to unexamined instances of a given kind [Okasha]
     Full Idea: Some philosophers use 'inductive' to just mean not deductive, …but we reserve it for inferences from examined to unexamined instances of a given kind.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: The instances must at least be comparable. Must you know the kind before you start? Surely you can examine a sequence of things, trying to decide whether or not they are of one kind? Is checking the uniformity of a kind induction?
14. Science / C. Induction / 6. Bayes's Theorem
If the rules only concern changes of belief, and not the starting point, absurd views can look ratiional [Okasha]
     Full Idea: If the only objective constraints concern how we should change our credences, but what our initial credences should be is entirely subjective, then individuals with very bizarre opinions about the world will count as perfectly rational.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: The important rationality has to be the assessement of a diverse batch of evidence, for which there can never be any rules or mathematics.
27. Natural Reality / A. Classical Physics / 1. Mechanics / b. Laws of motion
Galileo refuted the Aristotelian theory that heavier objects fall faster [Okasha]
     Full Idea: Galileo's most enduring contribution lay in mechanics, where he refuted the Aristotelian theory that heavier bodies fall faster than lighter.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: This must the first idea in the theory of mechanics, allowing mathematical treatment and accurate comparisons.