Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'Elements of Geometry' and 'Modes of Extension: comment on Fine'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
2. Reason / E. Argument / 6. Conclusive Proof
Proof reveals the interdependence of truths, as well as showing their certainty [Euclid, by Frege]
     Full Idea: Euclid gives proofs of many things which anyone would concede to him without question. ...The aim of proof is not merely to place the truth of a proposition beyond doubt, but also to afford us insight into the dependence of truths upon one another.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §02
     A reaction: This connects nicely with Shoemaker's view of analysis (Idea 8559), which I will adopt as my general view. I've always thought of philosophy as the aspiration to wisdom through the cartography of concepts.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
If you pick an arbitrary triangle, things proved of it are true of all triangles [Euclid, by Lemmon]
     Full Idea: Euclid begins proofs about all triangles with 'let ABC be a triangle', but ABC is not a proper name. It names an arbitrarily selected triangle, and if that has a property, then we can conclude that all triangles have the property.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by E.J. Lemmon - Beginning Logic 3.2
     A reaction: Lemmon adds the proviso that there must be no hidden assumptions about the triangle we have selected. You must generalise the properties too. Pick a triangle, any triangle, say one with three angles of 60 degrees; now generalise from it.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Euclid's geometry is synthetic, but Descartes produced an analytic version of it [Euclid, by Resnik]
     Full Idea: Euclid's geometry is a synthetic geometry; Descartes supplied an analytic version of Euclid's geometry, and we now have analytic versions of the early non-Euclidean geometries.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michael D. Resnik - Maths as a Science of Patterns One.4
     A reaction: I take it that the original Euclidean axioms were observations about the nature of space, but Descartes turned them into a set of pure interlocking definitions which could still function if space ceased to exist.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
     Full Idea: Assume a largest prime, then multiply the primes together and add one. The new number isn't prime, because we assumed a largest prime; but it can't be divided by a prime, because the remainder is one. So only a larger prime could divide it. Contradiction.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by James Robert Brown - Philosophy of Mathematics Ch.1
     A reaction: Not only a very elegant mathematical argument, but a model for how much modern logic proceeds, by assuming that the proposition is false, and then deducing a contradiction from it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
A unit is that according to which each existing thing is said to be one [Euclid]
     Full Idea: A unit is that according to which each existing thing is said to be one.
     From: Euclid (Elements of Geometry [c.290 BCE], 7 Def 1)
     A reaction: See Frege's 'Grundlagen' §29-44 for a sustained critique of this. Frege is good, but there must be something right about the Euclid idea. If I count stone, paper and scissors as three, each must first qualify to be counted as one. Psychology creeps in.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Postulate 2 says a line can be extended continuously [Euclid, by Shapiro]
     Full Idea: Euclid's Postulate 2 says the geometer can 'produce a finite straight line continuously in a straight line'.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Thinking About Mathematics 4.2
     A reaction: The point being that this takes infinity for granted, especially if you start counting how many points there are on the line. The Einstein idea that it might eventually come round and hit you on the back of the head would have charmed Euclid.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
     Full Idea: Euclid postulates: One can join two points by a straight line; Hilbert states the axiom: Given any two points, there exists a straight line on which both are situated.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Paul Bernays - On Platonism in Mathematics p.259
Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
     Full Idea: Euclid's axioms were insufficient to derive all the theorems of geometry: at various points in his proofs he appealed to properties that are obvious from the diagrams but do not follow from the stated axioms.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 03 'aim'
     A reaction: I suppose if the axioms of a system are based on self-evidence, this would licence an appeal to self-evidence elsewhere in the system. Only pedants insist on writing down what is obvious to everyone!
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
     Full Idea: Euclid's fifth 'parallel' postulate says if there is an infinite straight line and a point, then there is only one straight line through the point which won't intersect the first line. This axiom is independent of Euclid's first four (agreed) axioms.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 2.2
     A reaction: This postulate was challenged in the nineteenth century, which was a major landmark in the development of modern relativist views of knowledge.
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
     Full Idea: Euclid gives no principle of continuity, which would sanction an inference that if a line goes from the outside of a circle to the inside of circle, then it must intersect the circle at some point.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Philosophy of Mathematics 6.1 n2
     A reaction: Cantor and Dedekind began to contemplate discontinuous lines.
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
     Full Idea: In descriptive geometry the first 26 propositions of Euclid hold. In projective geometry the 1st, 7th, 16th and 17th require modification (as a straight line is not a closed series). Those after 26 depend on the postulate of parallels, so aren't assumed.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Bertrand Russell - The Principles of Mathematics §388
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Euclid's common notions or axioms are what we must have if we are to learn anything at all [Euclid, by Roochnik]
     Full Idea: The best known example of Euclid's 'common notions' is "If equals are subtracted from equals the remainders are equal". These can be called axioms, and are what "the man who is to learn anything whatever must have".
     From: report of Euclid (Elements of Geometry [c.290 BCE], 72a17) by David Roochnik - The Tragedy of Reason p.149
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Any equivalence relation among similar things allows the creation of an abstractum [Simons]
     Full Idea: Whenever we have an equivalence relation among things - such as similarity in a certain respect - we can abstract under the equivalence and consider the abstractum.
     From: Peter Simons (Modes of Extension: comment on Fine [2008], p.19)
     A reaction: This strikes me as dressing up old-fashioned psychological abstractionism in the respectable clothing of Fregean equivalences (such as 'directions'). We can actually do what Simons wants without the precision of partitioned equivalence classes.
Abstraction is usually seen as producing universals and numbers, but it can do more [Simons]
     Full Idea: Abstraction as a cognitive tool has been associated predominantly with the metaphysics of universals and of mathematical objects such as numbers. But it is more widely applicable beyond this standard range. I commend its judicious use.
     From: Peter Simons (Modes of Extension: comment on Fine [2008], p.21)
     A reaction: Personally I think our view of the world is founded on three psychological principles: abstraction, idealisation and generalisation. You can try to give them rigour, as 'equivalence classes', or 'universal quantifications', if it makes you feel better.