Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'On Second-Order Logic' and 'The Logic of Boundaryless Concepts'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Logic guides thinking, but it isn't a substitute for it [Rumfitt]
     Full Idea: Logic is part of a normative theory of thinking, not a substitute for thinking.
     From: Ian Rumfitt (The Logic of Boundaryless Concepts [2007], p.13)
     A reaction: There is some sort of logicians' dream, going back to Leibniz, of a reasoning engine, which accepts propositions and outputs inferences. I agree with this idea. People who excel at logic are often, it seems to me, modest at philosophy.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
     Full Idea: Boolos's conception of plural logic is as a reinterpretation of second-order logic.
     From: report of George Boolos (On Second-Order Logic [1975]) by Oliver,A/Smiley,T - What are Sets and What are they For? n5
     A reaction: Oliver and Smiley don't accept this view, and champion plural reference differently (as, I think, some kind of metalinguistic device?).
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
     Full Idea: The metatheory of second-order logic is hopelessly set-theoretic, and the notion of second-order validity possesses many if not all of the epistemic debilities of the notion of set-theoretic truth.
     From: George Boolos (On Second-Order Logic [1975], p.45)
     A reaction: Epistemic problems arise when a logic is incomplete, because some of the so-called truths cannot be proved, and hence may be unreachable. This idea indicates Boolos's motivation for developing a theory of plural quantification.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
     Full Idea: One may be of the opinion that no sentence ought to be considered as a truth of logic if, no matter how it is interpreted, it asserts that there are sets of certain sorts.
     From: George Boolos (On Second-Order Logic [1975], p.44)
     A reaction: My intuition is that in no way should any proper logic assert the existence of anything at all. Presumably interpretations can assert the existence of numbers or sets, but we should be able to identify something which is 'pure' logic. Natural deduction?
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
     Full Idea: One may say that '∀x x=x' means 'everything is identical to itself', but one must realise that one's answer has a determinate sense only if the reference (range) of 'everything' is fixed.
     From: George Boolos (On Second-Order Logic [1975], p.46)
     A reaction: This is the problem now discussed in the recent book 'Absolute Generality', of whether one can quantify without specifying a fixed or limited domain.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
     Full Idea: A weak completeness theorem shows that a sentence is provable whenever it is valid; a strong theorem, that a sentence is provable from a set of sentences whenever it is a logical consequence of the set.
     From: George Boolos (On Second-Order Logic [1975], p.52)
     A reaction: So the weak version says |- φ → |= φ, and the strong versions says Γ |- φ → Γ |= φ. Presumably it is stronger if it can specify the source of the inference.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
     Full Idea: Boolos asks why on earth compactness, whatever its virtues, should be definitive of logic itself.
     From: report of George Boolos (On Second-Order Logic [1975]) by Ian Hacking - What is Logic? §13
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Many concepts can only be expressed by second-order logic [Boolos]
     Full Idea: The notions of infinity and countability can be characterized by second-order sentences, though not by first-order sentences (as compactness and Skolem-Löwenheim theorems show), .. as well as well-ordering, progression, ancestral and identity.
     From: George Boolos (On Second-Order Logic [1975], p.48)
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague membership of sets is possible if the set is defined by its concept, not its members [Rumfitt]
     Full Idea: Vagueness in respect of membership is consistency with determinacy of the set's identity, so long as a set's identity is taken to consist, not in its having such-and-such members, but in its being the extension of a concept.
     From: Ian Rumfitt (The Logic of Boundaryless Concepts [2007], p.5)
     A reaction: I find this view of sets much more appealing than the one that identifies a set with its members. The empty set is less of a problem, as well as non-existents. Logicians prefer the extensional view because it is tidy.