Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'works' and 'Meaning'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
19. Language / A. Nature of Meaning / 3. Meaning as Speaker's Intention
Meaning needs an intention to induce a belief, and a recognition that this is the speaker's intention [Grice]
     Full Idea: For a statement to have (non-naturally) meant something, not merely must it have been 'uttered' with the intention of inducing a certain belief, but also the utterer must have intended an 'audience' to recognise the intention behind the utterance.
     From: H. Paul Grice (Meaning [1957], p.43)
     A reaction: This is Grice's famous and distinctive theory of meaning. I am struck by the problem of a password, which seems to have a quite different intention from its literal meaning. Also a speaker with two different audiences and opposite intentions.
Only the utterer's primary intention is relevant to the meaning [Grice]
     Full Idea: Only what I may call the primary intention of an utterer is relevant to the (non-natural) meaning of an utterance.
     From: H. Paul Grice (Meaning [1957], p.47)
     A reaction: This sounds okay for simple statements, but gets really tricky with complex statements, such as very ironic remarks delivered to an audience of diverse people.
We judge linguistic intentions rather as we judge non-linguistic intentions, so they are alike [Grice]
     Full Idea: To show that the criteria for judging linguistic intentions are very like the criteria for judging non-linguistic intentions is to show that linguistic intentions are very like non-linguistic intentions.
     From: H. Paul Grice (Meaning [1957], p.48)
     A reaction: This hint at the end of his paper is one of the key attractions of Grice's view. It offers an account of language that fits it into the world of animal communication and evolution. It never seems to quite capture the way meaning goes beyond intentions.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Heat is a state of vibration, not a substance [Joule]
     Full Idea: We consider heat not as a substance but as a state of vibration.
     From: James Joule (works [1870]), quoted by Peter Watson - Convergence 01 'Nature's'
     A reaction: The puzzle is that giving accurate accounts of vibrations, heat and movement require a quantitative substance, energy. But all we have here is movement, and the denial of a substance. Energy is 'nature's currency system'.
Joule showed that energy converts to heat, and heat to energy [Joule, by Papineau]
     Full Idea: James Joule established the equivalence of heat and mechanical energy, in the sense of showing that a specific amount of heat will always be produced by the expenditure of a given amount of energy, and vice versa.
     From: report of James Joule (works [1870]) by David Papineau - Thinking about Consciousness App 4.2
     A reaction: This was a major step towards the law of conservation of energy.