Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'The Logic of Scientific Discovery' and 'III.10 On Restraining your Will'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

2. Reason / A. Nature of Reason / 5. Objectivity
Scientific objectivity lies in inter-subjective testing [Popper]
     Full Idea: The objectivity of scientific statements lies in the fact that they can be inter-subjectively tested.
     From: Karl Popper (The Logic of Scientific Discovery [1934], p.22), quoted by Reiss,J/Spreger,J - Scientific Objectivity 2.4
     A reaction: Does this mean that objectivity is the same as consensus? A bunch of subjective prejudiced fools can reach a consensus. And in the middle of that bunch there can be one person who is objecfive. Sounds wrong.
2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
14. Science / A. Basis of Science / 6. Falsification
Give Nobel Prizes for really good refutations? [Gorham on Popper]
     Full Idea: Popper implies that we should be giving Nobel Prizes to scientists who use severe tests to show us what the world is not like!
     From: comment on Karl Popper (The Logic of Scientific Discovery [1934]) by Geoffrey Gorham - Philosophy of Science 2
     A reaction: A lovely simple point. The refuters are important members of the scientific team, but not the leaders.
Falsification is the criterion of demarcation between science and non-science [Popper, by Magee]
     Full Idea: According to Popper, falsification is the criterion of demarcation between science and non-science.
     From: report of Karl Popper (The Logic of Scientific Discovery [1934]) by Bryan Magee - Popper Ch.3
     A reaction: If I propose something which might be falsified in a hundred years, is it science NOW? Suppose my theory appeared to be falsifiable, but (after much effort) it turned out not to be? Suppose I just see a pattern (like quark theory) in a set of facts?
We don't only reject hypotheses because we have falsified them [Lipton on Popper]
     Full Idea: Popper's mistake is to hold that disconfirmation and elimination work exclusively through refutation.
     From: comment on Karl Popper (The Logic of Scientific Discovery [1934]) by Peter Lipton - Inference to the Best Explanation (2nd) 05 'Explanation'
     A reaction: The point is that we reject hypotheses even if they have not actually been refuted, on the grounds that they don't give a good explanation. I agree entirely with Lipton.
If falsification requires logical inconsistency, then probabilistic statements can't be falsified [Bird on Popper]
     Full Idea: In Popper's sense of the word 'falsify', whereby an observation statement falsifies a hypothesis only by being logically inconsistent with it, nothing can ever falsify a probabilistic or statistical hypothesis, which is therefore unscientific.
     From: comment on Karl Popper (The Logic of Scientific Discovery [1934]) by Alexander Bird - Philosophy of Science Ch.5
     A reaction: In general, no prediction can be falsified until the events occur. This seems to be Aristotle's 'sea fight' problem (Idea 1703).
When Popper gets in difficulties, he quietly uses induction to help out [Bird on Popper]
     Full Idea: It is a feature of Popper's philosophy that when the going gets tough, induction is quietly called upon to help out.
     From: comment on Karl Popper (The Logic of Scientific Discovery [1934]) by Alexander Bird - Philosophy of Science Ch.5
     A reaction: This appears to be the central reason for the decline in Popper's reputation as the saviour of science. It would certainly seem absurd to say that you know nothing when you have lots of verification but not a glimmer of falsification.
14. Science / B. Scientific Theories / 2. Aim of Science
Good theories have empirical content, explain a lot, and are not falsified [Popper, by Newton-Smith]
     Full Idea: Popper's principles are roughly that one theory is superior to another if it has greater empirical content, if it can account for the successes of the first theory, and if it has not been falsified (unlike the first theory).
     From: report of Karl Popper (The Logic of Scientific Discovery [1934]) by W.H. Newton-Smith - The Rationality of Science I.6
14. Science / C. Induction / 3. Limits of Induction
There is no such thing as induction [Popper, by Magee]
     Full Idea: According to Popper, induction is a dispensable concept, a myth. It does not exist. There is no such thing.
     From: report of Karl Popper (The Logic of Scientific Discovery [1934]) by Bryan Magee - Popper Ch.2
     A reaction: This is a nice bold summary of the Popper view - that falsification is the underlying rational activity which we mistakenly think is verification by repeated observations. Put like this, Popper seems to be wrong. We obviously learn from experiences.
14. Science / C. Induction / 4. Reason in Induction
Science cannot be shown to be rational if induction is rejected [Newton-Smith on Popper]
     Full Idea: If Popper follows Hume in abandoning induction, there is no way in which he can justify the claims that there is growth of scientific knowledge and that science is a rational activity.
     From: comment on Karl Popper (The Logic of Scientific Discovery [1934]) by W.H. Newton-Smith - The Rationality of Science III.3
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / c. Motivation for virtue
Virtue inspires Stoics, but I want a good temperament [Montaigne]
     Full Idea: What Stoics did from virtue I teach myself to do from temperament.
     From: Michel de Montaigne (III.10 On Restraining your Will [1580], p.1153)
     A reaction: I take this to be an Aristotelian criticism of Stoicism. They venerate virtue above everything, but Aristotle says you must integrate virtue into your very being, so that right actions flow from you, with very little need for premeditation.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / e. Character
There is not much point in only becoming good near the end of your life [Montaigne]
     Full Idea: It is almost better never to become a good man at all than to do so tardily, understanding how to live when you have no life left.
     From: Michel de Montaigne (III.10 On Restraining your Will [1580], p.1142)
     A reaction: A very nice perspective, which I don't recall Aristotle mentioning. It does, though, reinforce Aristotle's belief that early training is essential.
25. Social Practice / A. Freedoms / 3. Free speech
Nothing we say can be worse than unsaying it in the face of authority [Montaigne]
     Full Idea: Nothing which a gentleman says can seem worse than the shame of his unsaying it under duress from authority.
     From: Michel de Montaigne (III.10 On Restraining your Will [1580], p.1153)
     A reaction: The point is that you have to fight every day for free speech, because no matter what the law says, there are always people in power who want to shut you up.
25. Social Practice / E. Policies / 1. War / c. Combatants
People at home care far more than soldiers risking death about the outcome of wars [Montaigne]
     Full Idea: How many soldiers put themselves at risk every day in wars which they care little about, rushing into danger in battles the loss of which will not make them lose a night's sleep. Meanwhile a man at home is more passionate about the war than the soldier.
     From: Michel de Montaigne (III.10 On Restraining your Will [1580], p.1139)
     A reaction: It depends whether you are a mercenary (which the majority probably were in 1680), and what are the implications of defeat.