Combining Texts

All the ideas for '', 'Introduction to Mathematical Logic' and 'On the Infinite'

unexpand these ideas     |    start again     |     specify just one area for these texts


33 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
     Full Idea: If a designated conclusion follows from the premisses, but the argument involves two howlers which cancel each other out, then the moral is that the path an argument takes from premisses to conclusion does matter to its logical evaluation.
     From: Ian Rumfitt ("Yes" and "No" [2000], II)
     A reaction: The drift of this is that our view of logic should be a little closer to the reasoning of ordinary language, and we should rely a little less on purely formal accounts.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
     Full Idea: If 'and' and 'but' really are alike in sense, in what might that likeness consist? Some philosophers of classical logic will reply that they share a sense by virtue of sharing a truth table.
     From: Ian Rumfitt ("Yes" and "No" [2000])
     A reaction: This is the standard view which Rumfitt sets out to challenge.
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
     Full Idea: A connective will possess the sense that it has by virtue of its competent users' finding certain rules of inference involving it to be primitively obvious.
     From: Ian Rumfitt ("Yes" and "No" [2000], III)
     A reaction: Rumfitt cites Peacocke as endorsing this view, which characterises the logical connectives by their rules of usage rather than by their pure semantic value.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
I aim to establish certainty for mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is the clearest statement of the famous Hilbert Programme, which is said to have been brought to an abrupt end by Gödel's Incompleteness Theorems.
We believe all mathematical problems are solvable [Hilbert]
     Full Idea: The thesis that every mathematical problem is solvable - we are all convinced that it really is so.
     From: David Hilbert (On the Infinite [1925], p.200)
     A reaction: This will include, for example, Goldbach's Conjecture (every even is the sum of two primes), which is utterly simple but with no proof anywhere in sight.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
     Full Idea: No one shall drive us out of the paradise the Cantor has created for us.
     From: David Hilbert (On the Infinite [1925], p.191), quoted by James Robert Brown - Philosophy of Mathematics
     A reaction: This is Hilbert's famous refusal to accept any account of mathematics, such as Kant's, which excludes actual infinities. Cantor had laid out a whole glorious hierarchy of different infinities.
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
     Full Idea: To preserve the simple formal rules of ordinary Aristotelian logic, we must supplement the finitary statements with ideal statements.
     From: David Hilbert (On the Infinite [1925], p.195)
     A reaction: I find very appealing the picture of mathematics as rooted in the physical world, and then gradually extended by a series of 'idealisations', which should perhaps be thought of as fictions.
Only the finite can bring certainty to the infinite [Hilbert]
     Full Idea: Operating with the infinite can be made certain only by the finitary.
     From: David Hilbert (On the Infinite [1925], p.201)
     A reaction: See 'Compactness' for one aspect of this claim. I think Hilbert was fighting a rearguard action, and his idea now has few followers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
     Full Idea: Just as in the limit processes of the infinitesimal calculus, the infinitely large and small proved to be a mere figure of speech, so too we must realise that the infinite in the sense of an infinite totality, used in deductive methods, is an illusion.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is a very authoritative rearguard action. I no longer think the dispute matters much, it being just a dispute over a proposed new meaning for the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
     Full Idea: A homogeneous continuum which admits of the sort of divisibility needed to realise the infinitely small is nowhere to be found in reality.
     From: David Hilbert (On the Infinite [1925], p.186)
     A reaction: He makes this remark as a response to Planck's new quantum theory (the year before the big works of Heisenberg and Schrödinger). Personally I don't see why infinities should depend on the physical world, since they are imaginary.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
     Full Idea: We can conceive mathematics to be a stock of two kinds of formulas: first, those to which the meaningful communications of finitary statements correspond; and secondly, other formulas which signify nothing and which are ideal structures of our theory.
     From: David Hilbert (On the Infinite [1925], p.196), quoted by David Bostock - Philosophy of Mathematics 6.1
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184), quoted by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: This dream is famous for being shattered by Gödel's Incompleteness Theorem a mere six years later. Neverless there seem to be more limited certainties which are accepted in mathematics. The certainty of the whole of arithmetic is beyond us.
19. Language / F. Communication / 3. Denial
We learn 'not' along with affirmation, by learning to either affirm or deny a sentence [Rumfitt]
     Full Idea: The standard view is that affirming not-A is more complex than affirming the atomic sentence A itself, with the latter determining its sense. But we could learn 'not' directly, by learning at once how to either affirm A or reject A.
     From: Ian Rumfitt ("Yes" and "No" [2000], IV)
     A reaction: [compressed] This seems fairly anti-Fregean in spirit, because it looks at the psychology of how we learn 'not' as a way of clarifying what we mean by it, rather than just looking at its logical behaviour (and thus giving it a secondary role).