Combining Texts

All the ideas for '', 'Mental Models' and 'Set Theory and Its Philosophy'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory's three roles: taming the infinite, subject-matter of mathematics, and modes of reasoning [Potter]
     Full Idea: Set theory has three roles: as a means of taming the infinite, as a supplier of the subject-matter of mathematics, and as a source of its modes of reasoning.
     From: Michael Potter (Set Theory and Its Philosophy [2004], Intro 1)
     A reaction: These all seem to be connected with mathematics, but there is also ontological interest in set theory. Potter emphasises that his second role does not entail a commitment to sets 'being' numbers.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Usually the only reason given for accepting the empty set is convenience [Potter]
     Full Idea: It is rare to find any direct reason given for believing that the empty set exists, except for variants of Dedekind's argument from convenience.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There is at least one limit level [Potter]
     Full Idea: Axiom of Infinity: There is at least one limit level.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.9)
     A reaction: A 'limit ordinal' is one which has successors, but no predecessors. The axiom just says there is at least one infinity.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Nowadays we derive our conception of collections from the dependence between them [Potter]
     Full Idea: It is only quite recently that the idea has emerged of deriving our conception of collections from a relation of dependence between them.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.2)
     A reaction: This is the 'iterative' view of sets, which he traces back to Gödel's 'What is Cantor's Continuum Problem?'
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
The 'limitation of size' principles say whether properties collectivise depends on the number of objects [Potter]
     Full Idea: We group under the heading 'limitation of size' those principles which classify properties as collectivizing or not according to how many objects there are with the property.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 13.5)
     A reaction: The idea was floated by Cantor, toyed with by Russell (1906), and advocated by von Neumann. The thought is simply that paradoxes start to appear when sets become enormous.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology elides the distinction between the cards in a pack and the suits [Potter]
     Full Idea: Mereology tends to elide the distinction between the cards in a pack and the suits.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 02.1)
     A reaction: The example is a favourite of Frege's. Potter is giving a reason why mathematicians opted for set theory. I'm not clear, though, why a pack cannot have either 4 parts or 52 parts. Parts can 'fall under a concept' (such as 'legs'). I'm puzzled.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
     Full Idea: If a designated conclusion follows from the premisses, but the argument involves two howlers which cancel each other out, then the moral is that the path an argument takes from premisses to conclusion does matter to its logical evaluation.
     From: Ian Rumfitt ("Yes" and "No" [2000], II)
     A reaction: The drift of this is that our view of logic should be a little closer to the reasoning of ordinary language, and we should rely a little less on purely formal accounts.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
We can formalize second-order formation rules, but not inference rules [Potter]
     Full Idea: In second-order logic only the formation rules are completely formalizable, not the inference rules.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 01.2)
     A reaction: He cites Gödel's First Incompleteness theorem for this.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
     Full Idea: If 'and' and 'but' really are alike in sense, in what might that likeness consist? Some philosophers of classical logic will reply that they share a sense by virtue of sharing a truth table.
     From: Ian Rumfitt ("Yes" and "No" [2000])
     A reaction: This is the standard view which Rumfitt sets out to challenge.
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
     Full Idea: A connective will possess the sense that it has by virtue of its competent users' finding certain rules of inference involving it to be primitively obvious.
     From: Ian Rumfitt ("Yes" and "No" [2000], III)
     A reaction: Rumfitt cites Peacocke as endorsing this view, which characterises the logical connectives by their rules of usage rather than by their pure semantic value.
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
Supposing axioms (rather than accepting them) give truths, but they are conditional [Potter]
     Full Idea: A 'supposition' axiomatic theory is as concerned with truth as a 'realist' one (with undefined terms), but the truths are conditional. Satisfying the axioms is satisfying the theorem. This is if-thenism, or implicationism, or eliminative structuralism.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 01.1)
     A reaction: Aha! I had failed to make the connection between if-thenism and eliminative structuralism (of which I am rather fond). I think I am an if-thenist (not about all truth, but about provable truth).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
If set theory didn't found mathematics, it is still needed to count infinite sets [Potter]
     Full Idea: Even if set theory's role as a foundation for mathematics turned out to be wholly illusory, it would earn its keep through the calculus it provides for counting infinite sets.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.8)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
It is remarkable that all natural number arithmetic derives from just the Peano Axioms [Potter]
     Full Idea: It is a remarkable fact that all the arithmetical properties of the natural numbers can be derived from such a small number of assumptions (as the Peano Axioms).
     From: Michael Potter (Set Theory and Its Philosophy [2004], 05.2)
     A reaction: If one were to defend essentialism about arithmetic, this would be grist to their mill. I'm just saying.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is a set consisting entirely of ordered pairs [Potter]
     Full Idea: A set is called a 'relation' if every element of it is an ordered pair.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.7)
     A reaction: This is the modern extensional view of relations. For 'to the left of', you just list all the things that are to the left, with the things they are to the left of. But just listing the ordered pairs won't necessarily reveal how they are related.
9. Objects / B. Unity of Objects / 2. Substance / b. Need for substance
If dependence is well-founded, with no infinite backward chains, this implies substances [Potter]
     Full Idea: The argument that the relation of dependence is well-founded ...is a version of the classical arguments for substance. ..Any conceptual scheme which genuinely represents a world cannot contain infinite backward chains of meaning.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.3)
     A reaction: Thus the iterative conception of set may imply a notion of substance, and Barwise's radical attempt to ditch the Axiom of Foundation (Idea 13039) was a radical attempt to get rid of 'substances'. Potter cites Wittgenstein as a fan of substances here.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
Collections have fixed members, but fusions can be carved in innumerable ways [Potter]
     Full Idea: A collection has a determinate number of members, whereas a fusion may be carved up into parts in various equally valid (although perhaps not equally interesting) ways.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 02.1)
     A reaction: This seems to sum up both the attraction and the weakness of mereology. If you doubt the natural identity of so-called 'objects', then maybe classical mereology is the way to go.
10. Modality / A. Necessity / 1. Types of Modality
Priority is a modality, arising from collections and members [Potter]
     Full Idea: We must conclude that priority is a modality distinct from that of time or necessity, a modality arising in some way out of the manner in which a collection is constituted from its members.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.3)
     A reaction: He is referring to the 'iterative' view of sets, and cites Aristotle 'Metaphysics' 1019a1-4 as background.
14. Science / B. Scientific Theories / 7. Scientific Models
The models we use in reasoning may be more like perceptions than like language [Johnson-Laird]
     Full Idea: The models that people use to reason are more likely to resemble perception or conception of the events (from a God's-eye view) than a string of symbols directly corresponding to the linguistic form of the premises and then applying rules of inference.
     From: P. Johnson-Laird (Mental Models [1983], p.53), quoted by Georges Rey - Contemporary Philosophy of Mind 10.1.2
     A reaction: My intuition is that imagination is the single most important faculty in any conscious mind, and that even small animals have an inkling of the God's-eye view. Decisions need 'what-if' scenarios.
19. Language / F. Communication / 3. Denial
We learn 'not' along with affirmation, by learning to either affirm or deny a sentence [Rumfitt]
     Full Idea: The standard view is that affirming not-A is more complex than affirming the atomic sentence A itself, with the latter determining its sense. But we could learn 'not' directly, by learning at once how to either affirm A or reject A.
     From: Ian Rumfitt ("Yes" and "No" [2000], IV)
     A reaction: [compressed] This seems fairly anti-Fregean in spirit, because it looks at the psychology of how we learn 'not' as a way of clarifying what we mean by it, rather than just looking at its logical behaviour (and thus giving it a secondary role).