Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'Defending the Axioms' and '18: Book of Job'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
There is no hereafter in the Book of Job [Anon (Job), by Watson]
     Full Idea: The entire Book of Job is concerned with faith and suffering and inequality in a life where there is no hereafter (all the rewards promised to the Jews by their God are worldly).
     From: report of Anon (Job) (18: Book of Job [c.535 BCE]) by Peter Watson - Ideas Ch.5
     A reaction: It is extraordinary how such ideas can creep into the great religions, and then become taken for granted, as if no one had ever doubted them.