Combining Texts

All the ideas for '', 'Believing the Axioms I' and 'The Semantic Tradition from Kant to Carnap'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
New axioms are being sought, to determine the size of the continuum [Maddy]
     Full Idea: In current set theory, the search is on for new axioms to determine the size of the continuum.
     From: Penelope Maddy (Believing the Axioms I [1988], §0)
     A reaction: This sounds the wrong way round. Presumably we seek axioms that fix everything else about set theory, and then check to see what continuum results. Otherwise we could just pick our continuum, by picking our axioms.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
     Full Idea: Most writers agree that if any sense can be made of the distinction between analytic and synthetic, then the Axiom of Extensionality should be counted as analytic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [Boolos is the source of the idea] In other words Extensionality is not worth discussing, because it simply tells you what the world 'set' means, and there is no room for discussion about that. The set/class called 'humans' varies in size.
Extensional sets are clearer, simpler, unique and expressive [Maddy]
     Full Idea: The extensional view of sets is preferable because it is simpler, clearer, and more convenient, because it individuates uniquely, and because it can simulate intensional notions when the need arises.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [She cites Fraenkel, Bar-Hillet and Levy for this] The difficulty seems to be whether the extensional notion captures our ordinary intuitive notion of what constitutes a group of things, since that needs flexible size and some sort of unity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
     Full Idea: The Axiom of Infinity is a simple statement of Cantor's great breakthrough. His bold hypothesis that a collection of elements that had lurked in the background of mathematics could be infinite launched modern mathematics.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: It also embodies one of those many points where mathematics seems to depart from common sense - but then most subjects depart from common sense when they get more sophisticated. Look what happened to art.
Infinite sets are essential for giving an account of the real numbers [Maddy]
     Full Idea: If one is interested in analysis then infinite sets are indispensable since even the notion of a real number cannot be developed by means of finite sets alone.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: [Maddy is citing Fraenkel, Bar-Hillel and Levy] So Cantor's great breakthrough (Idea 13021) actually follows from the earlier acceptance of the real numbers, so that's where the departure from common sense started.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
     Full Idea: The Power Set Axiom is indispensable for a set-theoretic account of the continuum, ...and in so far as those attempts are successful, then the power-set principle gains some confirmatory support.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.6)
     A reaction: The continuum is, of course, notoriously problematic. Have we created an extra problem in our attempts at solving the first one?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice suggests that intensions are not needed to ensure classes [Coffa]
     Full Idea: The axiom of choice was an assumption that implicitly questioned the necessity of intensions to guarantee the presence of classes.
     From: J. Alberto Coffa (The Semantic Tradition from Kant to Carnap [1991], 7 'Log')
     A reaction: The point is that Choice just picks out members for no particular reason. So classes, it seems, don't need a reason to exist.
Efforts to prove the Axiom of Choice have failed [Maddy]
     Full Idea: Jordain made consistent and ill-starred efforts to prove the Axiom of Choice.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This would appear to be the fate of most axioms. You would presumably have to use a different system from the one you are engaged with to achieve your proof.
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
     Full Idea: Resistance to the Axiom of Choice centred on opposition between existence and construction. Modern set theory thrives on a realistic approach which says the choice set exists, regardless of whether it can be defined, constructed, or given by a rule.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This seems to be a key case for the ontology that lies at the heart of theory. Choice seems to be an invaluable tool for proofs, so it won't go away, so admit it to the ontology. Hm. So the tools of thought have existence?
A large array of theorems depend on the Axiom of Choice [Maddy]
     Full Idea: Many theorems depend on the Axiom of Choice, including that a countable union of sets is countable, and results in analysis, topology, abstract algebra and mathematical logic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: The modern attitude seems to be to admit anything if it leads to interesting results. It makes you wonder about the modern approach of using mathematics and logic as the cutting edges of ontological thinking.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
     Full Idea: The Iterative Conception (Zermelo 1930) says everything appears at some stage. Given two objects a and b, let A and B be the stages at which they first appear. Suppose B is after A. Then the pair set of a and b appears at the immediate stage after B.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: Presumably this all happens in 'logical time' (a nice phrase I have just invented!). I suppose we might say that the existence of the paired set is 'forced' by the preceding sets. No transcendental inferences in this story?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
     Full Idea: The 'limitation of size' is a vague intuition, based on the idea that being too large may generate the paradoxes.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: This is an intriguing idea to be found right at the centre of what is supposed to be an incredibly rigorous system.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
     Full Idea: If a designated conclusion follows from the premisses, but the argument involves two howlers which cancel each other out, then the moral is that the path an argument takes from premisses to conclusion does matter to its logical evaluation.
     From: Ian Rumfitt ("Yes" and "No" [2000], II)
     A reaction: The drift of this is that our view of logic should be a little closer to the reasoning of ordinary language, and we should rely a little less on purely formal accounts.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
     Full Idea: If 'and' and 'but' really are alike in sense, in what might that likeness consist? Some philosophers of classical logic will reply that they share a sense by virtue of sharing a truth table.
     From: Ian Rumfitt ("Yes" and "No" [2000])
     A reaction: This is the standard view which Rumfitt sets out to challenge.
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
     Full Idea: A connective will possess the sense that it has by virtue of its competent users' finding certain rules of inference involving it to be primitively obvious.
     From: Ian Rumfitt ("Yes" and "No" [2000], III)
     A reaction: Rumfitt cites Peacocke as endorsing this view, which characterises the logical connectives by their rules of usage rather than by their pure semantic value.
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
The semantic tradition aimed to explain the a priori semantically, not by Kantian intuition [Coffa]
     Full Idea: The semantic tradition's problem was the a priori; its enemy, Kantian pure intuition; its purpose, to develop a conception of the a priori in which pure intuition played no role; its strategy, to base that theory on a development of semantics.
     From: J. Alberto Coffa (The Semantic Tradition from Kant to Carnap [1991], 2 Intro)
     A reaction: It seems to me that intuition, in the modern sense, has been unnecessarily demonised. I would define it as 'rational insights which cannot be fully articulated'. Sherlock Holmes embodies it.
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
Platonism defines the a priori in a way that makes it unknowable [Coffa]
     Full Idea: The trouble with Platonism had always been its inability to define a priori knowledge in a way that made it possible for human beings to have it.
     From: J. Alberto Coffa (The Semantic Tradition from Kant to Carnap [1991], 7 'What')
     A reaction: This is the famous argument of Benacerraf 1973.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematics generalises by using variables [Coffa]
     Full Idea: The instrument of generality in mathematics is the variable.
     From: J. Alberto Coffa (The Semantic Tradition from Kant to Carnap [1991], 4 'The conc')
     A reaction: I like the idea that there are variables in ordinary speech, pronouns being the most obvious example. 'Cats' is a variable involving quantification over a domain of lovable fluffy mammals.
19. Language / F. Communication / 3. Denial
We learn 'not' along with affirmation, by learning to either affirm or deny a sentence [Rumfitt]
     Full Idea: The standard view is that affirming not-A is more complex than affirming the atomic sentence A itself, with the latter determining its sense. But we could learn 'not' directly, by learning at once how to either affirm A or reject A.
     From: Ian Rumfitt ("Yes" and "No" [2000], IV)
     A reaction: [compressed] This seems fairly anti-Fregean in spirit, because it looks at the psychology of how we learn 'not' as a way of clarifying what we mean by it, rather than just looking at its logical behaviour (and thus giving it a secondary role).
27. Natural Reality / D. Time / 1. Nature of Time / a. Absolute time
Relativity is as absolutist about space-time as Newton was about space [Coffa]
     Full Idea: If the theory of relativity might be thought to support an idealist construal of space and time, it is no less absolutistic about space-time than Newton's theory was about space.
     From: J. Alberto Coffa (The Semantic Tradition from Kant to Carnap [1991])
     A reaction: [He cites Minkowski, Weyl and Cartan for this conclusion] Coffa is clearly a bit cross about philosophers who draw naive idealist and relativist conclusions from relativity.