Combining Texts

All the ideas for '', 'Prcis of 'Ruling Passions'' and 'First-Order Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is the study of sound argument, or of certain artificial languages (or applying the latter to the former) [Hodges,W]
     Full Idea: A logic is a collection of closely related artificial languages, and its older meaning is the study of the rules of sound argument. The languages can be used as a framework for studying rules of argument.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.1)
     A reaction: [Hodges then says he will stick to the languages] The suspicion is that one might confine the subject to the artificial languages simply because it is easier, and avoids the tricky philosophical questions. That approximates to computer programming.
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
     Full Idea: If a designated conclusion follows from the premisses, but the argument involves two howlers which cancel each other out, then the moral is that the path an argument takes from premisses to conclusion does matter to its logical evaluation.
     From: Ian Rumfitt ("Yes" and "No" [2000], II)
     A reaction: The drift of this is that our view of logic should be a little closer to the reasoning of ordinary language, and we should rely a little less on purely formal accounts.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
     Full Idea: If 'and' and 'but' really are alike in sense, in what might that likeness consist? Some philosophers of classical logic will reply that they share a sense by virtue of sharing a truth table.
     From: Ian Rumfitt ("Yes" and "No" [2000])
     A reaction: This is the standard view which Rumfitt sets out to challenge.
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
     Full Idea: A connective will possess the sense that it has by virtue of its competent users' finding certain rules of inference involving it to be primitively obvious.
     From: Ian Rumfitt ("Yes" and "No" [2000], III)
     A reaction: Rumfitt cites Peacocke as endorsing this view, which characterises the logical connectives by their rules of usage rather than by their pure semantic value.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
A formula needs an 'interpretation' of its constants, and a 'valuation' of its variables [Hodges,W]
     Full Idea: To have a truth-value, a first-order formula needs an 'interpretation' (I) of its constants, and a 'valuation' (ν) of its variables. Something in the world is attached to the constants; objects are attached to variables.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.3)
There are three different standard presentations of semantics [Hodges,W]
     Full Idea: Semantic rules can be presented in 'Tarski style', where the interpretation-plus-valuation is reduced to the same question for simpler formulas, or the 'Henkin-Hintikka style' in terms of games, or the 'Barwise-Etchemendy style' for computers.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.3)
     A reaction: I haven't yet got the hang of the latter two, but I note them to map the territory.
I |= φ means that the formula φ is true in the interpretation I [Hodges,W]
     Full Idea: I |= φ means that the formula φ is true in the interpretation I.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.5)
     A reaction: [There should be no space between the vertical and the two horizontals!] This contrasts with |-, which means 'is proved in'. That is a syntactic or proof-theoretic symbol, whereas |= is a semantic symbol (involving truth).
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Down Löwenheim-Skolem: if a countable language has a consistent theory, that has a countable model [Hodges,W]
     Full Idea: Downward Löwenheim-Skolem (the weakest form): If L is a first-order language with at most countably many formulas, and T is a consistent theory in L. Then T has a model with at most countably many elements.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
Up Löwenheim-Skolem: if infinite models, then arbitrarily large models [Hodges,W]
     Full Idea: Upward Löwenheim-Skolem: every first-order theory with infinite models has arbitrarily large models.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
5. Theory of Logic / K. Features of Logics / 6. Compactness
If a first-order theory entails a sentence, there is a finite subset of the theory which entails it [Hodges,W]
     Full Idea: Compactness Theorem: suppose T is a first-order theory, ψ is a first-order sentence, and T entails ψ. Then there is a finite subset U of T such that U entails ψ.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
     A reaction: If entailment is possible, it can be done finitely.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
A 'set' is a mathematically well-behaved class [Hodges,W]
     Full Idea: A 'set' is a mathematically well-behaved class.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.6)
19. Language / F. Communication / 3. Denial
We learn 'not' along with affirmation, by learning to either affirm or deny a sentence [Rumfitt]
     Full Idea: The standard view is that affirming not-A is more complex than affirming the atomic sentence A itself, with the latter determining its sense. But we could learn 'not' directly, by learning at once how to either affirm A or reject A.
     From: Ian Rumfitt ("Yes" and "No" [2000], IV)
     A reaction: [compressed] This seems fairly anti-Fregean in spirit, because it looks at the psychology of how we learn 'not' as a way of clarifying what we mean by it, rather than just looking at its logical behaviour (and thus giving it a secondary role).
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / d. Ethical theory
Some philosophers always want more from morality; for others, nature is enough [Blackburn]
     Full Idea: The history of moral theory is largely a history of battles between people who want more (truth, absolutes...) - Plato, Locke, Cudworth, Kant, Nagel - and people content with what we have (nature) - Aristotle, Epicurus, Hobbes, Hume, Stevenson.
     From: Simon Blackburn (Précis of 'Ruling Passions' [2002], p.133)
     A reaction: [Thanks to Neil Sinclair for this one] As a devotee of Aristotle, I like this. I'm always impressed, though, by people who go the extra mile in morality, because they are in the grips of purer and loftier ideals than I am. They also turn into monsters!