Combining Texts

All the ideas for '', 'Summa Contra Gentiles' and 'The Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


14 ideas

1. Philosophy / A. Wisdom / 2. Wise People
Wise people should contemplate and discuss the truth, and fight against falsehood [Aquinas]
     Full Idea: The role of the wise person is to meditate on the truth, especially the truth regarding the first principle, and to discuss it with others, but also to fight against the falsity that is its contrary.
     From: Thomas Aquinas (Summa Contra Gentiles [1268], I.1.6), quoted by Kretzmann/Stump - Aquinas, Thomas 14
     A reaction: So nice to hear someone (from no matter how long ago) saying that wisdom is concerned with truth. If you lose your grip on truth (which many thinkers seem to have done) you must also abandon wisdom. Then fools rule.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZF set theory has variables which range over sets, 'equals' and 'member', and extensionality [Dummett]
     Full Idea: ZF set theory is a first-order axiomatization. Variables range over sets, there are no second-order variables, and primitive predicates are just 'equals' and 'member of'. The axiom of extensionality says sets with the same members are identical.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 7)
     A reaction: If the eleven members of the cricket team are the same as the eleven members of the hockey team, is the cricket team the same as the hockey team? Our cricket team is better than our hockey team, so different predicates apply to them.
The main alternative to ZF is one which includes looser classes as well as sets [Dummett]
     Full Idea: The main alternative to ZF is two-sorted theories, with some variables ranging over classes. Classes have more generous existence assumptions: there is a universal class, containing all sets, and a class containing all ordinals. Classes are not members.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 7.1.1)
     A reaction: My intuition is to prefer strict systems when it comes to logical theories. The whole point is precision. Otherwise we could just think about things, and skip all this difficult symbolic stuff.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
     Full Idea: If a designated conclusion follows from the premisses, but the argument involves two howlers which cancel each other out, then the moral is that the path an argument takes from premisses to conclusion does matter to its logical evaluation.
     From: Ian Rumfitt ("Yes" and "No" [2000], II)
     A reaction: The drift of this is that our view of logic should be a little closer to the reasoning of ordinary language, and we should rely a little less on purely formal accounts.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists reject excluded middle, not for a third value, but for possibility of proof [Dummett]
     Full Idea: It must not be concluded from the rejection of excluded middle that intuitionistic logic operates with three values: true, false, and neither true nor false. It does not make use of true and false, but only with a construction being a proof.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 8.1)
     A reaction: This just sounds like verificationism to me, with all its problems. It seems to make speculative statements meaningless, which can't be right. Realism has lots of propositions which are assumed to be true or false, but also unknowable.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
     Full Idea: A connective will possess the sense that it has by virtue of its competent users' finding certain rules of inference involving it to be primitively obvious.
     From: Ian Rumfitt ("Yes" and "No" [2000], III)
     A reaction: Rumfitt cites Peacocke as endorsing this view, which characterises the logical connectives by their rules of usage rather than by their pure semantic value.
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
     Full Idea: If 'and' and 'but' really are alike in sense, in what might that likeness consist? Some philosophers of classical logic will reply that they share a sense by virtue of sharing a truth table.
     From: Ian Rumfitt ("Yes" and "No" [2000])
     A reaction: This is the standard view which Rumfitt sets out to challenge.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
First-order logic concerns objects; second-order adds properties, kinds, relations and functions [Dummett]
     Full Idea: First-order logic is distinguished by generalizations (quantification) only over objects: second-order logic admits generalizations or quantification over properties or kinds of objects, and over relations between them, and functions defined over them.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 3.1)
     A reaction: Second-order logic was introduced by Frege, but is (interestingly) rejected by Quine, because of the ontological commitments involved. I remain unconvinced that quantification entails ontological commitment, so I'm happy.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths and inference are characterized either syntactically or semantically [Dummett]
     Full Idea: There are two ways of characterizing logical truths and correct inference. Proof-theoretic or syntactic characterizations, if the formalization admits of proof or derivation; and model-theoretic or semantic versions, being true in all interpretations.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 3.1)
     A reaction: Dummett calls this distinction 'fundamental'. The second one involves truth, and hence meaning, where the first one just responds to rules. ..But how can you have a notion of correctly following a rule, without a notion of truth?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Ordinals seem more basic than cardinals, since we count objects in sequence [Dummett]
     Full Idea: It can be argued that the notion of ordinal numbers is more fundamental than that of cardinals. To count objects, we must count them in sequence. ..The theory of ordinals forms the substratum of Cantor's theory of cardinals.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 5)
     A reaction: Depends what you mean by 'fundamental'. I would take cardinality to be psychologically prior ('that is a lot of sheep'). You can't order people by height without first acquiring some people with differing heights. I vote for cardinals.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The number 4 has different positions in the naturals and the wholes, with the same structure [Dummett]
     Full Idea: The number 4 cannot be characterized solely by its position in a system, because it has different positions in the system of natural numbers and that of the positive whole numbers, whereas these systems have the very same structure.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 6.1)
     A reaction: Dummett seems to think this is fairly decisive against structuralism. There is also the structure of the real numbers. We will solve this by saying that the wholes are abstracted from the naturals, which are abstracted from the reals. Job done.
17. Mind and Body / A. Mind-Body Dualism / 4. Occasionalism
Without God's influence every operation would stop, so God causes everything [Aquinas]
     Full Idea: If God's divine influence stopped, every operation would stop. Every operation, therefore, of everything is traced back to him as cause.
     From: Thomas Aquinas (Summa Contra Gentiles [1268], III.67), quoted by Brian Davies - Introduction to the Philosophy of Religion 3 'Freedom'
     A reaction: If the systematic interraction of mind and body counts as an 'operation', then this seems to imply Occasionalism.
19. Language / F. Communication / 3. Denial
We learn 'not' along with affirmation, by learning to either affirm or deny a sentence [Rumfitt]
     Full Idea: The standard view is that affirming not-A is more complex than affirming the atomic sentence A itself, with the latter determining its sense. But we could learn 'not' directly, by learning at once how to either affirm A or reject A.
     From: Ian Rumfitt ("Yes" and "No" [2000], IV)
     A reaction: [compressed] This seems fairly anti-Fregean in spirit, because it looks at the psychology of how we learn 'not' as a way of clarifying what we mean by it, rather than just looking at its logical behaviour (and thus giving it a secondary role).
27. Natural Reality / D. Time / 1. Nature of Time / f. Eternalism
Eternity coexists with passing time, as the centre of a circle coexists with its circumference [Aquinas]
     Full Idea: The centre of a circle is directly opposite any designated point on the circumference. In this way, whatever is in any part of time coexists with what is eternal as being present to it even though past or future with respect to another part of time.
     From: Thomas Aquinas (Summa Contra Gentiles [1268], I.66), quoted by Robin Le Poidevin - Past, Present and Future of Debate about Tense 2 c
     A reaction: A nice example of a really cool analogy which almost gets you to accept something which is actually completely incomprehensible.