Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'Disputed questions about truth' and 'Introduction to Zermelo's 1930 paper'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
Truth is the conformity of being to intellect [Aquinas]
     Full Idea: The word 'true' expresses the conformity of a being to intellect.
     From: Thomas Aquinas (Disputed questions about truth [1267], I.1c), quoted by Kretzmann/Stump - Aquinas, Thomas 09
     A reaction: I believe in a 'robust' theory of truth, but accept that the concept of 'correspondence' has major problems. So I embrace with delight the word 'conformity'. I offer the world The Conformity Theory of Truth! 'Conform' is suitably vague.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The first-order ZF axiomatisation is highly non-categorical [Hallett,M]
     Full Idea: The first-order Sermelo-Fraenkel axiomatisation is highly non-categorical.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1213)
Non-categoricity reveals a sort of incompleteness, with sets existing that the axioms don't reveal [Hallett,M]
     Full Idea: The non-categoricity of the axioms which Zermelo demonstrates reveals an incompleteness of a sort, ....for this seems to show that there will always be a set (indeed, an unending sequence) that the basic axioms are incapable of revealing to be sets.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1215)
     A reaction: Hallett says the incompleteness concerning Zermelo was the (transfinitely) indefinite iterability of the power set operation (which is what drives the 'iterative conception' of sets).
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Zermelo allows ur-elements, to enable the widespread application of set-theory [Hallett,M]
     Full Idea: Unlike earlier writers (such as Fraenkel), Zermelo clearly allows that there might be ur-elements (that is, objects other than the empty set, which have no members). Indeed he sees in this the possibility of widespread application of set-theory.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The General Continuum Hypothesis and its negation are both consistent with ZF [Hallett,M]
     Full Idea: In 1938, Gödel showed that ZF plus the General Continuum Hypothesis is consistent if ZF is. Cohen showed that ZF and not-GCH is also consistent if ZF is, which finally shows that neither GCH nor ¬GCH can be proved from ZF itself.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)
7. Existence / A. Nature of Existence / 3. Being / f. Primary being
Being is basic to thought, and all other concepts are additions to being [Aquinas]
     Full Idea: Being is inherently intellect's most intelligible object, in which it finds the basis of all conceptions. ...All of intellect's other conceptions must be arrived at by adding to being, insofar as they express what is not expressed by 'being' itself.
     From: Thomas Aquinas (Disputed questions about truth [1267], I.1c), quoted by Kretzmann/Stump - Aquinas, Thomas 09
     A reaction: I like the word 'intelligible' here. We might know reality, or be aware of appearances, but what is intelligible lies nicely in between. What would Berkeley make of that? I presume 'intelligible' means 'makes good sense'.