Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'A Short History of German Philosophy' and 'Experience First (and reply)'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
Early Romantics sought a plurality of systems, in a quest for freedom [Hösle]
     Full Idea: It was an early Romantic idea that there is necessarily a plurality of systems in which individuality is expressed; for a complete system would destroy freedom.
     From: Vittorio Hösle (A Short History of German Philosophy [2013], 7)
     A reaction: I'm not clear why you are free because you are locked into system that differs from that of other people. True freedom seems to be either no system, or continually remaking one's own system. Why is such freedom valuable? Freedom v truth?
2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
11. Knowledge Aims / A. Knowledge / 2. Understanding
It is nonsense that understanding does not involve knowledge; to understand, you must know [Dougherty/Rysiew]
     Full Idea: The proposition that understanding does not involve knowledge is widespread (for example, in discussions of what philosophy aims at), but hardly withstands scrutiny. If you do not know how a jet engine works, you do not understand how it works.
     From: Dougherty,T/Rysiew,P (Experience First (and reply) [2014], p.24)
     A reaction: This seems a bit disingenuous. As in 'Theaetetus', knowing the million parts of a jet engine is not to understand it. More strongly - how could knowledge of an infinity of separate propositional truths amount to understanding on their own?
To grasp understanding, we should be more explicit about what needs to be known [Dougherty/Rysiew]
     Full Idea: An essential prerequisite for useful discussion of the relation between knowledge and understanding is systematic explicitness about what is to be known or understood.
     From: Dougherty,T/Rysiew,P (Experience First (and reply) [2014], p.25)
     A reaction: This is better. I say what needs to be known for understanding is the essence of the item under discussion (my PhD thesis!). Obviously understanding needs some knowledge, but I take it that epistemology should be understanding-first. That is the main aim.
11. Knowledge Aims / A. Knowledge / 7. Knowledge First
Rather than knowledge, our epistemic aim may be mere true belief, or else understanding and wisdom [Dougherty/Rysiew]
     Full Idea: If we say our cognitive aim is to get knowledge, the opposing views are the naturalistic view that what matters is just true belief (or just 'getting by'), or that there are rival epistemic goods such as understanding and wisdom.
     From: Dougherty,T/Rysiew,P (Experience First (and reply) [2014], p.17)
     A reaction: [compressed summary] I'm a fan of understanding. The accumulation of propositional knowledge would relish knowing the mass of every grain of sand on a beach. If you say the propositions should be 'important', other values are invoked.
25. Social Practice / E. Policies / 5. Education / d. Study of history
In the 18th century history came to be seen as progressive, rather than cyclical [Hösle]
     Full Idea: The turning point in the history of the philosophy of history occurs in the eighteenth century, when the ancient cyclical model of Vico is superseded by the idea of progress.
     From: Vittorio Hösle (A Short History of German Philosophy [2013], 6)
     A reaction: He says that Hegel merely inherited this progressive view, rather than creating it. I'm not sure how widely held the cyclical view was. I don't recognise it in Shakespeare. Science and technology must have suggested progress.