Combining Texts

All the ideas for 'What is Logic?st1=Ian Hacking', 'The Ways of Paradox' and 'Theology and Verification'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
The set scheme discredited by paradoxes is actually the most natural one [Quine]
     Full Idea: Each proposed revision of set theory is unnatural, because the natural scheme is the unrestricted one that the antinomies discredit.
     From: Willard Quine (The Ways of Paradox [1961], p.16)
     A reaction: You can either takes this free-far-all version of set theory, and gradually restrain it for each specific problem, or start from scratch and build up in safe steps. The latter is (I think) the 'iterated' approach.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's antinomy challenged the idea that any condition can produce a set [Quine]
     Full Idea: In the case of Russell's antinomy, the tacit and trusted pattern of reasoning that is found wanting is this: for any condition you can formulate, there is a class whose members are the things meeting the condition.
     From: Willard Quine (The Ways of Paradox [1961], p.11)
     A reaction: This is why Russell's Paradox is so important for set theory, which in turn makes it important for the foundations of mathematics.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
5. Theory of Logic / L. Paradox / 3. Antinomies
Antinomies contradict accepted ways of reasoning, and demand revisions [Quine]
     Full Idea: An 'antinomy' produces a self-contradiction by accepted ways of reasoning. It establishes that some tacit and trusted pattern of reasoning must be made explicit and henceforward be avoided or revised.
     From: Willard Quine (The Ways of Paradox [1961], p.05)
     A reaction: Quine treats antinomies as of much greater importance than mere paradoxes. It is often possible to give simple explanations of paradoxes, but antinomies go to the root of our belief system. This was presumably Kant's intended meaning.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Whenever the pursuer reaches the spot where the pursuer has been, the pursued has moved on [Quine]
     Full Idea: The Achilles argument is that (if the front runner keeps running) each time the pursuer reaches a spot where the pursuer has been, the pursued has moved a bit beyond.
     From: Willard Quine (The Ways of Paradox [1961], p.03)
     A reaction: Quine is always wonderfully lucid, and this is the clearest simple statement of the paradox.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
A barber shaves only those who do not shave themselves. So does he shave himself? [Quine]
     Full Idea: In a certain village there is a barber, who shaves all and only those men in the village who do not shave themselves. So does the barber shave himself? The barber shaves himself if and only if he does not shave himself.
     From: Willard Quine (The Ways of Paradox [1961], p.02)
     A reaction: [Russell himself quoted this version of his paradox, from an unnamed source] Quine treats his as trivial because it only concerns barbers, but the full Russell paradox is a major 'antinomy', because it concerns sets.
Membership conditions which involve membership and non-membership are paradoxical [Quine]
     Full Idea: With Russell's antinomy, ...each tie the trouble comes of taking a membership condition that itself talks in turn of membership and non-membership.
     From: Willard Quine (The Ways of Paradox [1961], p.13)
     A reaction: Hence various stipulations to rule out vicious circles or referring to sets of the 'wrong type' are invoked to cure the problem. The big question is how strong to make the restrictions.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If we write it as '"this sentence is false" is false', there is no paradox [Quine]
     Full Idea: If we supplant the sentence 'this sentence is false' with one saying what it refers to, we get '"this sentence is false" is false'. But then the whole outside sentence attributes falsity no longer to itself but to something else, so there is no paradox.
     From: Willard Quine (The Ways of Paradox [1961], p.07)
     A reaction: Quine is pointing us towards type theory and meta-languages to solve the problem. We now have the Revenge Liar, and the problem has not been fully settled.
29. Religion / D. Religious Issues / 1. Religious Commitment / c. Religious Verification
It may be hard to verify that we have become immortal, but we could still then verify religious claims [Hick, by PG]
     Full Idea: Verification of religious claims after death is only possible if the concept of surviving death is intelligible, and we can understand the concept of immortality, despite difficulties in being certain that we had reached it.
     From: report of John Hick (Theology and Verification [1960], IV) by PG - Db (ideas)
Belief in an afterlife may be unverifiable in this life, but it will be verifiable after death [Hick, by PG]
     Full Idea: Religion is capable of 'eschatological verification', by reaching evidence at the end of life, even though falsification of its claims is never found in this life; a prediction of coming to a Celestial City must await the end of the journey.
     From: report of John Hick (Theology and Verification [1960], III) by PG - Db (ideas)
29. Religion / D. Religious Issues / 1. Religious Commitment / d. Religious Falsification
Some things (e.g. a section of the expansion of PI) can be verified but not falsified [Hick, by PG]
     Full Idea: Falsification and verification are not logically equivalent. For example, you might verify the claim that there will be three consecutive sevens in the infinite expansion of PI, but you could never falsify such a claim.
     From: report of John Hick (Theology and Verification [1960], §II) by PG - Db (ideas)