Combining Texts

All the ideas for '', 'Review of Parsons (1983)' and 'What Numbers Are'

unexpand these ideas     |    start again     |     specify just one area for these texts


7 ideas

5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
     Full Idea: If a designated conclusion follows from the premisses, but the argument involves two howlers which cancel each other out, then the moral is that the path an argument takes from premisses to conclusion does matter to its logical evaluation.
     From: Ian Rumfitt ("Yes" and "No" [2000], II)
     A reaction: The drift of this is that our view of logic should be a little closer to the reasoning of ordinary language, and we should rely a little less on purely formal accounts.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
     Full Idea: If 'and' and 'but' really are alike in sense, in what might that likeness consist? Some philosophers of classical logic will reply that they share a sense by virtue of sharing a truth table.
     From: Ian Rumfitt ("Yes" and "No" [2000])
     A reaction: This is the standard view which Rumfitt sets out to challenge.
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
     Full Idea: A connective will possess the sense that it has by virtue of its competent users' finding certain rules of inference involving it to be primitively obvious.
     From: Ian Rumfitt ("Yes" and "No" [2000], III)
     A reaction: Rumfitt cites Peacocke as endorsing this view, which characterises the logical connectives by their rules of usage rather than by their pure semantic value.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim-Skolem says any theory with a true interpretation has a model in the natural numbers [White,NP]
     Full Idea: The Löwenheim-Skolem theorem tells us that any theory with a true interpretation has a model in the natural numbers.
     From: Nicholas P. White (What Numbers Are [1974], V)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Finite cardinalities don't need numbers as objects; numerical quantifiers will do [White,NP]
     Full Idea: Statements involving finite cardinalities can be made without treating numbers as objects at all, simply by using quantification and identity to define numerically definite quantifiers in the manner of Frege.
     From: Nicholas P. White (What Numbers Are [1974], IV)
     A reaction: [He adds Quine 1960:268 as a reference]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Mathematics is part of science; transfinite mathematics I take as mostly uninterpreted [Quine]
     Full Idea: The mathematics wanted for use in empirical sciences is for me on a par with the rest of science. Transfinite ramifications are on the same footing as simplifications, but anything further is on a par rather with uninterpreted systems,
     From: Willard Quine (Review of Parsons (1983) [1984], p.788), quoted by Penelope Maddy - Naturalism in Mathematics II.2
     A reaction: The word 'uninterpreted' is the interesting one. Would mathematicians object if the philosophers graciously allowed them to continue with their transfinite work, as long as they signed something to say it was uninterpreted?
19. Language / F. Communication / 3. Denial
We learn 'not' along with affirmation, by learning to either affirm or deny a sentence [Rumfitt]
     Full Idea: The standard view is that affirming not-A is more complex than affirming the atomic sentence A itself, with the latter determining its sense. But we could learn 'not' directly, by learning at once how to either affirm A or reject A.
     From: Ian Rumfitt ("Yes" and "No" [2000], IV)
     A reaction: [compressed] This seems fairly anti-Fregean in spirit, because it looks at the psychology of how we learn 'not' as a way of clarifying what we mean by it, rather than just looking at its logical behaviour (and thus giving it a secondary role).