Combining Texts

All the ideas for 'The Evolution of Modern Metaphysics', 'First-Order Modal Logic' and 'Vagueness'

expand these ideas     |    start again     |     specify just one area for these texts


87 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics is the most general attempt to make sense of things [Moore,AW]
3. Truth / A. Truth Problems / 5. Truth Bearers
Truth and falsity apply to suppositions as well as to assertions [Williamson]
3. Truth / A. Truth Problems / 7. Falsehood
True and false are not symmetrical; false is more complex, involving negation [Williamson]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Many-valued logics don't solve vagueness; its presence at the meta-level is ignored [Williamson]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Formal semantics defines validity as truth preserved in every model [Williamson]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
'Bivalence' is the meta-linguistic principle that 'A' in the object language is true or false [Williamson]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded Middle is 'A or not A' in the object language [Williamson]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Or-elimination is 'Argument by Cases'; it shows how to derive C from 'A or B' [Williamson]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
A sorites stops when it collides with an opposite sorites [Williamson]
7. Existence / D. Theories of Reality / 10. Vagueness / a. Problem of vagueness
When bivalence is rejected because of vagueness, we lose classical logic [Williamson]
Vagueness undermines the stable references needed by logic [Williamson]
A vague term can refer to very precise elements [Williamson]
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
Equally fuzzy objects can be identical, so fuzziness doesn't entail vagueness [Williamson]
7. Existence / D. Theories of Reality / 10. Vagueness / c. Vagueness as ignorance
Vagueness is epistemic. Statements are true or false, but we often don't know which [Williamson]
If a heap has a real boundary, omniscient speakers would agree where it is [Williamson]
The epistemic view says that the essence of vagueness is ignorance [Williamson]
If there is a true borderline of which we are ignorant, this drives a wedge between meaning and use [Williamson]
Vagueness in a concept is its indiscriminability from other possible concepts [Williamson]
7. Existence / D. Theories of Reality / 10. Vagueness / d. Vagueness as linguistic
The vagueness of 'heap' can remain even when the context is fixed [Williamson]
The 'nihilist' view of vagueness says that 'heap' is not a legitimate concept [Williamson]
We can say propositions are bivalent, but vague utterances don't express a proposition [Williamson]
If the vague 'TW is thin' says nothing, what does 'TW is thin if his perfect twin is thin' say? [Williamson]
7. Existence / D. Theories of Reality / 10. Vagueness / e. Higher-order vagueness
Asking when someone is 'clearly' old is higher-order vagueness [Williamson]
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
Supervaluation keeps classical logic, but changes the truth in classical semantics [Williamson]
You can't give a precise description of a language which is intrinsically vague [Williamson]
Supervaluation assigns truth when all the facts are respected [Williamson]
Supervaluation has excluded middle but not bivalence; 'A or not-A' is true, even when A is undecided [Williamson]
Truth-functionality for compound statements fails in supervaluation [Williamson]
Supervaluationism defines 'supertruth', but neglects it when defining 'valid' [Williamson]
Supervaluation adds a 'definitely' operator to classical logic [Williamson]
Supervaluationism cannot eliminate higher-order vagueness [Williamson]
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Nominalists suspect that properties etc are our projections, and could have been different [Williamson]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
If fuzzy edges are fine, then why not fuzzy temporal, modal or mereological boundaries? [Williamson]
9. Objects / E. Objects over Time / 8. Continuity of Rivers
A river is not just event; it needs actual and counterfactual boundaries [Williamson]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
We can't infer metaphysical necessities to be a priori knowable - or indeed knowable in any way [Williamson]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
11. Knowledge Aims / A. Knowledge / 1. Knowledge
We have inexact knowledge when we include margins of error [Williamson]
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Appearances are nothing beyond representations, which is transcendental ideality [Moore,AW]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
Knowing you know (KK) is usually denied if the knowledge concept is missing, or not considered [Williamson]
18. Thought / A. Modes of Thought / 2. Propositional Attitudes
To know, believe, hope or fear, one must grasp the thought, but not when you fail to do them [Williamson]
18. Thought / D. Concepts / 4. Structure of Concepts / h. Family resemblance
'Blue' is not a family resemblance, because all the blues resemble in some respect [Williamson]
19. Language / B. Reference / 1. Reference theories
References to the 'greatest prime number' have no reference, but are meaningful [Williamson]
19. Language / C. Assigning Meanings / 2. Semantics
The 't' and 'f' of formal semantics has no philosophical interest, and may not refer to true and false [Williamson]
19. Language / D. Propositions / 2. Abstract Propositions / b. Propositions as possible worlds
It is known that there is a cognitive loss in identifying propositions with possible worlds [Williamson]