Combining Texts

All the ideas for 'Mereology', 'The Lagoon: how Aristotle invented science' and 'Introduction to the Theory of Logic'

expand these ideas     |    start again     |     specify just one area for these texts


30 ideas

1. Philosophy / C. History of Philosophy / 2. Ancient Philosophy / b. Pre-Socratic philosophy
The Pre-Socratics are not simple naturalists, because they do not always 'leave the gods out' [Leroi]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Sets can be defined by 'enumeration', or by 'abstraction' (based on a property) [Zalabardo]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'Cartesian Product' of two sets relates them by pairing every element with every element [Zalabardo]
A 'partial ordering' is reflexive, antisymmetric and transitive [Zalabardo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Determinacy: an object is either in a set, or it isn't [Zalabardo]
Maybe set theory need not be well-founded [Varzi]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: Determinate totals of objects always make a set [Zalabardo]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology need not be nominalist, though it is often taken to be so [Varzi]
Are there mereological atoms, and are all objects made of them? [Varzi]
There is something of which everything is part, but no null-thing which is part of everything [Varzi]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
A first-order 'sentence' is a formula with no free variables [Zalabardo]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ |= φ for sentences if φ is true when all of Γ is true [Zalabardo]
Γ |= φ if φ is true when all of Γ is true, for all structures and interpretations [Zalabardo]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
Propositional logic just needs ¬, and one of ∧, ∨ and → [Zalabardo]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
The semantics shows how truth values depend on instantiations of properties and relations [Zalabardo]
We can do semantics by looking at given propositions, or by building new ones [Zalabardo]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
We make a truth assignment to T and F, which may be true and false, but merely differ from one another [Zalabardo]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Logically true' (|= φ) is true for every truth-assignment [Zalabardo]
Logically true sentences are true in all structures [Zalabardo]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence-set is 'satisfiable' if at least one truth-assignment makes them all true [Zalabardo]
Some formulas are 'satisfiable' if there is a structure and interpretation that makes them true [Zalabardo]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure models a sentence if it is true in the model, and a set of sentences if they are all true in the model [Zalabardo]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
If a set is defined by induction, then proof by induction can be applied to it [Zalabardo]
9. Objects / C. Structure of Objects / 5. Composition of an Object
'Composition is identity' says multitudes are the reality, loosely composing single things [Varzi]
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Parts may or may not be attached, demarcated, arbitrary, material, extended, spatial or temporal [Varzi]
If 'part' is reflexive, then identity is a limit case of parthood [Varzi]
'Part' stands for a reflexive, antisymmetric and transitive relation [Varzi]
The parthood relation will help to define at least seven basic predicates [Varzi]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Sameness of parts won't guarantee identity if their arrangement matters [Varzi]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / b. Conceivable but impossible
Conceivability may indicate possibility, but literary fantasy does not [Varzi]