Combining Texts

All the ideas for 'Understanding and Essence', 'Infinity: Quest to Think the Unthinkable' and 'Replies on 'Limits of Abstraction''

expand these ideas     |    start again     |     specify just one area for these texts


42 ideas

1. Philosophy / F. Analytic Philosophy / 4. Conceptual Analysis
If 2-D conceivability can a priori show possibilities, this is a defence of conceptual analysis [Vaidya]
1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Concern for rigour can get in the way of understanding phenomena [Fine,K]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
Any set can always generate a larger set - its powerset, of subsets [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
There is no stage at which we can take all the sets to have been generated [Fine,K]
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
We might combine the axioms of set theory with the axioms of mereology [Fine,K]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
If you ask what F the second-order quantifier quantifies over, you treat it as first-order [Fine,K]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Assigning an entity to each predicate in semantics is largely a technical convenience [Fine,K]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Dedekind cuts lead to the bizarre idea that there are many different number 1's [Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal number is defined by the set that comes before it [Clegg]
Beyond infinity cardinals and ordinals can come apart [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Why should a Dedekind cut correspond to a number? [Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Unless we know whether 0 is identical with the null set, we create confusions [Fine,K]
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set-theoretic imperialists think sets can represent every mathematical object [Fine,K]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicists say mathematics can be derived from definitions, and can be known that way [Fine,K]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
A generative conception of abstracts proposes stages, based on concepts of previous objects [Fine,K]
9. Objects / D. Essence of Objects / 7. Essence and Necessity / c. Essentials are necessary
Essential properties are necessary, but necessary properties may not be essential [Vaidya]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
Define conceivable; how reliable is it; does inconceivability help; and what type of possibility results? [Vaidya]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / c. Possible but inconceivable
Inconceivability (implying impossibility) may be failure to conceive, or incoherence [Vaidya]
11. Knowledge Aims / A. Knowledge / 2. Understanding
Can you possess objective understanding without realising it? [Vaidya]
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / b. Gettier problem
Gettier deductive justifications split the justification from the truthmaker [Vaidya]
In a disjunctive case, the justification comes from one side, and the truth from the other [Vaidya]
18. Thought / C. Content / 1. Content
Aboutness is always intended, and cannot be accidental [Vaidya]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction-theoretic imperialists think Fregean abstracts can represent every mathematical object [Fine,K]
We can combine ZF sets with abstracts as urelements [Fine,K]
We can create objects from conditions, rather than from concepts [Fine,K]