Combining Texts

All the ideas for 'German Philosophy: a very short introduction', 'Replies on 'Limits of Abstraction'' and 'Philosophy of Logic'

expand these ideas     |    start again     |     specify just one area for these texts


43 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Concern for rigour can get in the way of understanding phenomena [Fine,K]
2. Reason / B. Laws of Thought / 3. Non-Contradiction
If you say that a contradiction is true, you change the meaning of 'not', and so change the subject [Quine]
3. Truth / F. Semantic Truth / 2. Semantic Truth
Talk of 'truth' when sentences are mentioned; it reminds us that reality is the point of sentences [Quine]
3. Truth / H. Deflationary Truth / 1. Redundant Truth
Truth is redundant for single sentences; we do better to simply speak the sentence [Quine]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
We can eliminate 'or' from our basic theory, by paraphrasing 'p or q' as 'not(not-p and not-q)' [Quine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
There is no stage at which we can take all the sets to have been generated [Fine,K]
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
We might combine the axioms of set theory with the axioms of mereology [Fine,K]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
My logical grammar has sentences by predication, then negation, conjunction, and existential quantification [Quine]
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Maybe logical truth reflects reality, but in different ways in different languages [Quine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Quine rejects second-order logic, saying that predicates refer to multiple objects [Quine, by Hodes]
Quantifying over predicates is treating them as names of entities [Quine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle has three different definitions [Quine]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Quantification theory can still be proved complete if we add identity [Quine]
5. Theory of Logic / F. Referring in Logic / 1. Naming / f. Names eliminated
Names are not essential, because naming can be turned into predication [Quine]
5. Theory of Logic / G. Quantification / 1. Quantification
Universal quantification is widespread, but it is definable in terms of existential quantification [Quine]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
You can't base quantification on substituting names for variables, if the irrationals cannot all be named [Quine]
Some quantifications could be false substitutionally and true objectually, because of nameless objects [Quine]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Putting a predicate letter in a quantifier is to make it the name of an entity [Quine]
If you ask what F the second-order quantifier quantifies over, you treat it as first-order [Fine,K]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Assigning an entity to each predicate in semantics is largely a technical convenience [Fine,K]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A sentence is logically true if all sentences with that grammatical structure are true [Quine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Dedekind cuts lead to the bizarre idea that there are many different number 1's [Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Why should a Dedekind cut correspond to a number? [Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Unless we know whether 0 is identical with the null set, we create confusions [Fine,K]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set-theoretic imperialists think sets can represent every mathematical object [Fine,K]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicists say mathematics can be derived from definitions, and can be known that way [Fine,K]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
A generative conception of abstracts proposes stages, based on concepts of previous objects [Fine,K]
8. Modes of Existence / B. Properties / 12. Denial of Properties
Predicates are not names; predicates are the other parties to predication [Quine]
9. Objects / A. Existence of Objects / 1. Physical Objects
A physical object is the four-dimensional material content of a portion of space-time [Quine]
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
Four-d objects helps predication of what no longer exists, and quantification over items from different times [Quine]
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
Some conditionals can be explained just by negation and conjunction: not(p and not-q) [Quine]
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Transcendental idealism aims to explain objectivity through subjectivity [Bowie]
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / d. Absolute idealism
The Idealists saw the same unexplained spontaneity in Kant's judgements and choices [Bowie]
German Idealism tried to stop oppositions of appearances/things and receptivity/spontaneity [Bowie]
Crucial to Idealism is the idea of continuity between receptivity and spontaneous judgement [Bowie]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction-theoretic imperialists think Fregean abstracts can represent every mathematical object [Fine,K]
We can combine ZF sets with abstracts as urelements [Fine,K]
We can create objects from conditions, rather than from concepts [Fine,K]
19. Language / A. Nature of Meaning / 8. Synonymy
Single words are strongly synonymous if their interchange preserves truth [Quine]
19. Language / D. Propositions / 6. Propositions Critique
It makes no sense to say that two sentences express the same proposition [Quine]
There is no rule for separating the information from other features of sentences [Quine]
We can abandon propositions, and just talk of sentences and equivalence [Quine]
19. Language / F. Communication / 5. Pragmatics / a. Contextual meaning
A good way of explaining an expression is saying what conditions make its contexts true [Quine]