Combining Texts

All the ideas for 'Locke on Essences and Kinds', 'The Evolution of Logic' and 'Philosophy of Mathematics'

expand these ideas     |    start again     |     specify just one area for these texts


113 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
2. Reason / A. Nature of Reason / 6. Coherence
Coherence is a primitive, intuitive notion, not reduced to something formal [Shapiro]
2. Reason / D. Definition / 7. Contextual Definition
An 'implicit definition' gives a direct description of the relations of an entity [Shapiro]
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal operators are usually treated as quantifiers [Shapiro]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
With the Axiom of Choice every set can be well-ordered [Hart,WD]
Axiom of Choice: some function has a value for every set in a given set [Shapiro]
The Axiom of Choice seems to license an infinite amount of choosing [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
Von Neumann defines α<β as α∈β [Hart,WD]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
Anti-realists reject set theory [Shapiro]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
The two standard explanations of consequence are semantic (in models) and deductive [Shapiro]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Intuitionism only sanctions modus ponens if all three components are proved [Shapiro]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Either logic determines objects, or objects determine logic, or they are separate [Shapiro]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle might be seen as a principle of omniscience [Shapiro]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Classical connectives differ from their ordinary language counterparts; '∧' is timeless, unlike 'and' [Shapiro]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A function is just an arbitrary correspondence between collections [Shapiro]
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Maybe plural quantifiers should be understood in terms of classes or sets [Shapiro]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is 'satisfiable' if it has a model [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models are ways the world might be from a first-order point of view [Hart,WD]
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
Model theory deals with relations, reference and extensions [Shapiro]
Model theory studies how set theory can model sets of sentences [Hart,WD]
Model theory is mostly confined to first-order theories [Hart,WD]
The central notion of model theory is the relation of 'satisfaction' [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Theory ontology is never complete, but is only determined 'up to isomorphism' [Shapiro]
The set-theoretical hierarchy contains as many isomorphism types as possible [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Any theory with an infinite model has a model of every infinite cardinality [Shapiro]
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Virtually all of mathematics can be modeled in set theory [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
Real numbers are thought of as either Cauchy sequences or Dedekind cuts [Shapiro]
Understanding the real-number structure is knowing usage of the axiomatic language of analysis [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Cuts are made by the smallest upper or largest lower number, some of them not rational [Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
There is no grounding for mathematics that is more secure than mathematics [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
For intuitionists, proof is inherently informal [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers just need an initial object, successors, and an induction principle [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Mathematics originally concerned the continuous (geometry) and the discrete (arithmetic) [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Mathematical foundations may not be sets; categories are a popular rival [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Baseball positions and chess pieces depend entirely on context [Shapiro]
The even numbers have the natural-number structure, with 6 playing the role of 3 [Shapiro]
Could infinite structures be apprehended by pattern recognition? [Shapiro]
The 4-pattern is the structure common to all collections of four objects [Shapiro]
The main mathematical structures are algebraic, ordered, and topological [Shapiro]
Some structures are exemplified by both abstract and concrete [Shapiro]
Mathematical structures are defined by axioms, or in set theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
The main versions of structuralism are all definitionally equivalent [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Is there is no more to structures than the systems that exemplify them? [Shapiro]
Number statements are generalizations about number sequences, and are bound variables [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Because one structure exemplifies several systems, a structure is a one-over-many [Shapiro]
There is no 'structure of all structures', just as there is no set of all sets [Shapiro]
Shapiro's structuralism says model theory (comparing structures) is the essence of mathematics [Shapiro, by Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Does someone using small numbers really need to know the infinite structure of arithmetic? [Shapiro]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We distinguish realism 'in ontology' (for objects), and 'in truth-value' (for being either true or false) [Shapiro]
If mathematical objects are accepted, then a number of standard principles will follow [Shapiro]
Platonists claim we can state the essence of a number without reference to the others [Shapiro]
Platonism must accept that the Peano Axioms could all be false [Shapiro]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition is an outright hindrance to five-dimensional geometry [Shapiro]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
A stone is a position in some pattern, and can be viewed as an object, or as a location [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Can the ideal constructor also destroy objects? [Shapiro]
Presumably nothing can block a possible dynamic operation? [Shapiro]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Can we discover whether a deck is fifty-two cards, or a person is time-slices or molecules? [Shapiro]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The abstract/concrete boundary now seems blurred, and would need a defence [Shapiro]
Mathematicians regard arithmetic as concrete, and group theory as abstract [Shapiro]
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
7. Existence / D. Theories of Reality / 7. Fictionalism
Fictionalism eschews the abstract, but it still needs the possible (without model theory) [Shapiro]
Structuralism blurs the distinction between mathematical and ordinary objects [Shapiro]
9. Objects / A. Existence of Objects / 1. Physical Objects
The notion of 'object' is at least partially structural and mathematical [Shapiro]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
A blurry border is still a border [Shapiro]
9. Objects / D. Essence of Objects / 13. Nominal Essence
If kinds depend only on what can be observed, many underlying essences might produce the same kind [Eagle]
Nominal essence are the observable properties of things [Eagle]
Nominal essence mistakenly gives equal weight to all underlying properties that produce appearances [Eagle]
10. Modality / A. Necessity / 6. Logical Necessity
Logical modalities may be acceptable, because they are reducible to satisfaction in models [Shapiro]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Why does the 'myth' of possible worlds produce correct modal logic? [Shapiro]
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We apprehend small, finite mathematical structures by abstraction from patterns [Shapiro]
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]
18. Thought / E. Abstraction / 2. Abstracta by Selection
Simple types can be apprehended through their tokens, via abstraction [Shapiro]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
We can apprehend structures by focusing on or ignoring features of patterns [Shapiro]
We can focus on relations between objects (like baseballers), ignoring their other features [Shapiro]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstract objects might come by abstraction over an equivalence class of base entities [Shapiro]
26. Natural Theory / B. Natural Kinds / 4. Source of Kinds
Kinds are fixed by the essential properties of things - the properties that make it that kind of thing [Eagle]