Combining Texts

All the ideas for 'fragments/reports', 'Set Theory' and 'Philosophy of Logic'

expand these ideas     |    start again     |     specify just one area for these texts


27 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
For scientific purposes there is a precise concept of 'true-in-L', using set theory [Putnam]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Modern notation frees us from Aristotle's restriction of only using two class-names in premises [Putnam]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The universal syllogism is now expressed as the transitivity of subclasses [Putnam]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
'⊃' ('if...then') is used with the definition 'Px ⊃ Qx' is short for '¬(Px & ¬Qx)' [Putnam]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
In type theory, 'x ∈ y' is well defined only if x and y are of the appropriate type [Putnam]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Before the late 19th century logic was trivialised by not dealing with relations [Putnam]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Asserting first-order validity implicitly involves second-order reference to classes [Putnam]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Unfashionably, I think logic has an empirical foundation [Putnam]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
We can identify functions with certain sets - or identify sets with certain functions [Putnam]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Having a valid form doesn't ensure truth, as it may be meaningless [Putnam]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Sets larger than the continuum should be studied in an 'if-then' spirit [Putnam]
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Nominalism only makes sense if it is materialist [Putnam]
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Physics is full of non-physical entities, such as space-vectors [Putnam]
14. Science / A. Basis of Science / 4. Prediction
Most predictions are uninteresting, and are only sought in order to confirm a theory [Putnam]
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]