Combining Texts

All the ideas for 'fragments/reports', 'Set Theory and Its Philosophy' and 'The Boundary Stones of Thought'

expand these ideas     |    start again     |     specify just one area for these texts


53 ideas

1. Philosophy / E. Nature of Metaphysics / 6. Metaphysics as Conceptual
Logic doesn't have a metaphysical basis, but nor can logic give rise to the metaphysics [Rumfitt]
3. Truth / A. Truth Problems / 1. Truth
The idea that there are unrecognised truths is basic to our concept of truth [Rumfitt]
3. Truth / B. Truthmakers / 7. Making Modal Truths
'True at a possibility' means necessarily true if what is said had obtained [Rumfitt]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Semantics for propositions: 1) validity preserves truth 2) non-contradition 3) bivalence 4) truth tables [Rumfitt]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
'Absolute necessity' would have to rest on S5 [Rumfitt]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
It is the second-order part of intuitionistic logic which actually negates some classical theorems [Rumfitt]
Intuitionists can accept Double Negation Elimination for decidable propositions [Rumfitt]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory's three roles: taming the infinite, subject-matter of mathematics, and modes of reasoning [Potter]
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Usually the only reason given for accepting the empty set is convenience [Potter]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
A set may well not consist of its members; the empty set, for example, is a problem [Rumfitt]
A set can be determinate, because of its concept, and still have vague membership [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There is at least one limit level [Potter]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
If the totality of sets is not well-defined, there must be doubt about the Power Set Axiom [Rumfitt]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Nowadays we derive our conception of collections from the dependence between them [Potter]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
The 'limitation of size' principles say whether properties collectivise depends on the number of objects [Potter]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology elides the distinction between the cards in a pack and the suits [Potter]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is higher-order laws which can expand the range of any sort of deduction [Rumfitt]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The case for classical logic rests on its rules, much more than on the Principle of Bivalence [Rumfitt]
Classical logic rules cannot be proved, but various lines of attack can be repelled [Rumfitt]
If truth-tables specify the connectives, classical logic must rely on Bivalence [Rumfitt]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
We can formalize second-order formation rules, but not inference rules [Potter]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence is a relation that can extended into further statements [Rumfitt]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Normal deduction presupposes the Cut Law [Rumfitt]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
When faced with vague statements, Bivalence is not a compelling principle [Rumfitt]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
In specifying a logical constant, use of that constant is quite unavoidable [Rumfitt]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
Supposing axioms (rather than accepting them) give truths, but they are conditional [Potter]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Introduction rules give deduction conditions, and Elimination says what can be deduced [Rumfitt]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are just the assumption-free by-products of logical rules [Rumfitt]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Monotonicity means there is a guarantee, rather than mere inductive support [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Maybe an ordinal is a property of isomorphic well-ordered sets, and not itself a set [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
If set theory didn't found mathematics, it is still needed to count infinite sets [Potter]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals do not stand in a determinate order relation to zero [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Cantor and Dedekind aimed to give analysis a foundation in set theory (rather than geometry) [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
It is remarkable that all natural number arithmetic derives from just the Peano Axioms [Potter]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is a set consisting entirely of ordered pairs [Potter]
9. Objects / B. Unity of Objects / 2. Substance / b. Need for substance
If dependence is well-founded, with no infinite backward chains, this implies substances [Potter]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
An object that is not clearly red or orange can still be red-or-orange, which sweeps up problem cases [Rumfitt]
The extension of a colour is decided by a concept's place in a network of contraries [Rumfitt]
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
Collections have fixed members, but fusions can be carved in innumerable ways [Potter]
10. Modality / A. Necessity / 1. Types of Modality
Priority is a modality, arising from collections and members [Potter]
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical modalities respect the actual identities of things [Rumfitt]
10. Modality / A. Necessity / 6. Logical Necessity
S5 is the logic of logical necessity [Rumfitt]
10. Modality / B. Possibility / 1. Possibility
Since possibilities are properties of the world, calling 'red' the determination of a determinable seems right [Rumfitt]
If two possibilities can't share a determiner, they are incompatible [Rumfitt]
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possibilities are like possible worlds, but not fully determinate or complete [Rumfitt]
11. Knowledge Aims / A. Knowledge / 2. Understanding
Medieval logicians said understanding A also involved understanding not-A [Rumfitt]
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
In English 'evidence' is a mass term, qualified by 'little' and 'more' [Rumfitt]
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
We understand conditionals, but disagree over their truth-conditions [Rumfitt]
19. Language / F. Communication / 3. Denial
The truth grounds for 'not A' are the possibilities incompatible with truth grounds for A [Rumfitt]
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]